Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Horm Behav ; 162: 105524, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38513526

RESUMO

Letrozole, an aromatase inhibitor preventing estrogen synthesis from testosterone, is used as an adjuvant therapy in estrogen receptor-positive breast cancer patients. However, like other aromatase inhibitors, it induces many side effects, including impaired cognition. Despite its negative effect in humans, results from animal models are inconsistent and suggest that letrozole can either impair or improve cognition. Here, we studied the effects of chronic letrozole treatment on cognitive behavior of adult female BALB/c mice, a relevant animal model for breast cancer studies, to develop an appropriate animal model aimed at testing therapies to mitigate side effects of letrozole. In Morris water maze, letrozole 0.1 mg/kg impaired reference learning and memory. Interestingly, most of the letrozole 0.1 mg/kg-treated mice were able to learn the new platform position in reversal training and performed similar to control mice in a reversal probe test. Results of the reversal test suggest that letrozole did not completely disrupt spatial navigation, but rather delayed acquisition of spatial information. The delay might be related to increased anxiety as suggested by increased thigmotactic behavior during the reference memory training. The learning impairment was water maze-specific since we did not observe impairment in other spatial tasks such as in Y-maze or object location test. In contrast, the dose of 0.3 mg/kg did not have effect on water maze learning and facilitated locomotor habituation and recognition in novel object recognition test. The current study shows that letrozole dose-dependently modulates behavioral response and that its effects are task-dependent.


Assuntos
Ansiedade , Inibidores da Aromatase , Letrozol , Aprendizagem em Labirinto , Camundongos Endogâmicos BALB C , Animais , Letrozol/farmacologia , Feminino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Ansiedade/tratamento farmacológico , Inibidores da Aromatase/farmacologia , Nitrilas/farmacologia , Triazóis/farmacologia
2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33361152

RESUMO

The balance between NLRP3 inflammasome activation and mitophagy is essential for homeostasis and cellular health, but this relationship remains poorly understood. Here we found that interleukin-1α (IL-1α)-deficient macrophages have reduced caspase-1 activity and diminished IL-1ß release, concurrent with reduced mitochondrial damage, suggesting a role for IL-1α in regulating this balance. LPS priming of macrophages induced pro-IL-1α translocation to mitochondria, where it directly interacted with mitochondrial cardiolipin (CL). Computational modeling revealed a likely CL binding motif in pro-IL-1α, similar to that found in LC3b. Thus, binding of pro-IL-1α to CL in activated macrophages may interrupt CL-LC3b-dependent mitophagy, leading to enhanced Nlrp3 inflammasome activation and more robust IL-1ß production. Mutation of pro-IL-1α residues predicted to be involved in CL binding resulted in reduced pro-IL-1α-CL interaction, a reduction in NLRP3 inflammasome activity, and increased mitophagy. These data identify a function for pro-IL-1α in regulating mitophagy and the potency of NLRP3 inflammasome activation.


Assuntos
Cardiolipinas/metabolismo , Interleucina-1alfa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Autofagia , Cardiolipinas/fisiologia , Caspase 1/metabolismo , Feminino , Células HEK293 , Humanos , Inflamassomos/metabolismo , Interleucina-1alfa/fisiologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Espécies Reativas de Oxigênio/metabolismo
3.
Neurobiol Dis ; 173: 105840, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35995342

RESUMO

An early inflammatory insult is the most recognized risk factor associated with neurodevelopmental psychiatric disorders, even more so than genetic variants. Notably, complement component 4 (C4), a molecule involved in inflammatory responses, has been strongly associated with schizophrenia (SZ) and its role in other neurodevelopmental disorders, such as autism (ASD), is an area of active investigation. However, while C4 in SZ has been implicated in the context of synaptic pruning, little is known about its neuroinflammatory role. The subventricular zone (SVZ) is a region heavily involved in neurodevelopment and neuroimmune interactions through the lifespan; thus, it is a region wherein C4 may play a vital role in disease pathology. Using in situ hybridization with radioactive riboprobes and RNAscope, we identified robust astrocytic expression of C4 in the SVZ and in the septum pellucidum. C4 was also expressed in ependyma, neurons, and Ki67+ progenitor cells. Examination of mRNA levels showed elevated C4 in both ASD and SZ, with higher expression in SZ compared to controls. Targeted transcriptomic analysis of inflammatory pathways revealed a strong association of complement system genes with SZ, and to a lesser extent, ASD, as well as generalized immune dysregulation without a strong association with known infectious pathways. Analysis of differentially expressed genes (DEGs) showed that ASD DEGs were enriched in adaptive immune system functions such as Th cell differentiation, while SZ DEGs were enriched in innate immune system functions, including NF-κB and toll like receptor signaling. Moreover, the number of Ki67+ cells was significantly higher in ASD compared to SZ and controls. Taken together, these results support a role for C4 into inflammatory-neuroimmune dysregulation observed in SZ and ASD pathology.


Assuntos
Transtorno do Espectro Autista , Complemento C4 , Esquizofrenia , Transtorno do Espectro Autista/genética , Complemento C4/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Ventrículos Laterais/patologia , NF-kappa B/metabolismo , RNA Mensageiro
4.
J Pharmacol Exp Ther ; 375(1): 115-126, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32759369

RESUMO

Earlier reports suggested that galantamine, a drug approved to treat mild-to-moderate Alzheimer's disease (AD), and other centrally acting reversible acetylcholinesterase (AChE) inhibitors can serve as adjunct pretreatments against poisoning by organophosphorus compounds, including the nerve agent soman. The present study was designed to determine whether pretreatment with a clinically relevant oral dose of galantamine HBr mitigates the acute toxicity of 4.0×LD50 soman (15.08 µg/kg) in Macaca fascicularis posttreated intramuscularly with the conventional antidotes atropine (0.4 mg/kg), 2-pyridine aldoxime methyl chloride (30 mg/kg), and midazolam (0.32 mg/kg). The pharmacokinetic profile and maximal degree of blood AChE inhibition (∼25%-40%) revealed that the oral doses of 1.5 and 3.0 mg/kg galantamine HBr in these nonhuman primates (NHPs) translate to human-equivalent doses that are within the range used for AD treatment. Subsequent experiments demonstrated that 100% of NHPs pretreated with either dose of galantamine, challenged with soman, and posttreated with conventional antidotes survived 24 hours. By contrast, given the same posttreatments, 0% and 40% of the NHPs pretreated, respectively, with vehicle and pyridostigmine bromide (1.2 mg/kg, oral), a peripherally acting reversible AChE inhibitor approved as pretreatment for military personnel at risk of exposure to soman, survived 24 hours after the challenge. In addition, soman caused extensive neurodegeneration in the hippocampi of saline- or pyridostigmine-pretreated NHPs, but not in the hippocampi of galantamine-pretreated animals. To our knowledge, this is the first study to demonstrate the effectiveness of clinically relevant oral doses of galantamine to prevent the acute toxicity of supralethal doses of soman in NHPs. SIGNIFICANCE STATEMENT: This is the first study to demonstrate that a clinically relevant oral dose of galantamine effectively prevents lethality and neuropathology induced by a supralethal dose of the nerve agent soman in Cynomolgus monkeys posttreated with conventional antidotes. These findings are of major significance for the continued development of galantamine as an adjunct pretreatment against nerve agent poisoning.


Assuntos
Antídotos/uso terapêutico , Substâncias para a Guerra Química/toxicidade , Galantamina/uso terapêutico , Hipocampo/efeitos dos fármacos , Intoxicação por Organofosfatos/prevenção & controle , Soman/toxicidade , Acetilcolinesterase/sangue , Administração Oral , Animais , Antídotos/administração & dosagem , Área Sob a Curva , Galantamina/administração & dosagem , Galantamina/sangue , Hipocampo/patologia , Dose Letal Mediana , Macaca fascicularis , Masculino , Intoxicação por Organofosfatos/enzimologia
5.
Stem Cells ; 35(3): 557-571, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27709799

RESUMO

Embryonic neurodevelopment involves inhibition of proliferation of multipotent neural stem cells (NSCs) followed by differentiation into neurons, astrocytes and oligodendrocytes to form the brain. We have identified a new neurotrophic factor, NF-α1, which inhibits proliferation and promotes differentiation of NSC/progenitors derived from E13.5 mouse cortex. Inhibition of proliferation of these cells was mediated through negatively regulating the Wnt pathway and decreasing ß-catenin. NF-α1 induced differentiation of NSCs to astrocytes by enhancing Glial Fibrillary Acidic Protein (GFAP) expression through activating the ERK1/2-Sox9 signaling pathway. Cultured E13.5 cortical stem cells from NF-α1-knockout mice showed decreased astrocyte numbers compared to wild-type mice, which was rescued by treatment with NF-α1. In vivo, immunocytochemistry of brain sections and Western blot analysis of neocortex of mice showed a gradual increase of NF-α1 expression from E14.5 to P1 and a surge of GFAP expression at P1, the time of increase in astrogenesis. Importantly, NF-α1-Knockout mice showed ∼49% fewer GFAP positive astrocytes in the neocortex compared to WT mice at P1. Thus, NF-α1 is critical for regulating antiproliferation and cell fate determination, through differentiating embryonic stem cells to GFAP-positive astrocytes for normal neurodevelopment. Stem Cells 2017;35:557-571.


Assuntos
Astrócitos/citologia , Carboxipeptidase H/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Crescimento Neural/metabolismo , Células-Tronco Neurais/citologia , Fatores de Transcrição SOX9/metabolismo , Via de Sinalização Wnt , Animais , Astrócitos/metabolismo , Proliferação de Células , Desenvolvimento Embrionário , Células-Tronco Embrionárias/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Nervoso/embriologia , Células-Tronco Neurais/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Fatores de Tempo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
6.
Res Sq ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260618

RESUMO

There is an increased incidence of autism among the children of women who take the anti-epileptic, mood-stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNA-seq data obtained from E12.5 fetal mouse brains 3 hours after VPA administration to the pregnant dam revealed that VPA rapidly and significantly increased or decreased the expression of approximately 7,300 genes. No significant sex differences in VPA-induced gene expression were observed. Expression of 399 autism risk genes was significantly altered by VPA as was expression of 255 genes that have been reported to play fundamental roles in fetal brain development but are not otherwise linked to autism. Expression of genes associated with intracellular signaling pathways, neurogenesis, and excitation-inhibition balance as well as synaptogenesis, neuronal fate determination, axon and dendritic development, neuroinflammation, circadian rhythms, and epigenetic modulation of gene expression was dysregulated by VPA. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity and, consequently behavior, in the adult. The set of genes meeting these criteria provides potential targets for future hypothesis-driven studies to elucidate the proximal causes of errors in brain connectivity underlying neurodevelopmental disorders such as autism.

7.
Front Immunol ; 15: 1411979, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989288

RESUMO

Background: Kawasaki disease (KD), an acute febrile illness and systemic vasculitis, is the leading cause of acquired heart disease in children in industrialized countries. KD leads to the development of coronary artery aneurysms (CAA) in affected children, which may persist for months and even years after the acute phase of the disease. There is an unmet need to characterize the immune and pathological mechanisms of the long-term complications of KD. Methods: We examined cardiovascular complications in the Lactobacillus casei cell wall extract (LCWE) mouse model of KD-like vasculitis over 4 months. The long-term immune, pathological, and functional changes occurring in cardiovascular lesions were characterized by histological examination, flow cytometric analysis, immunofluorescent staining of cardiovascular tissues, and transthoracic echocardiogram. Results: CAA and abdominal aorta dilations were detected up to 16 weeks following LCWE injection and initiation of acute vasculitis. We observed alterations in the composition of circulating immune cell profiles, such as increased monocyte frequencies in the acute phase of the disease and higher counts of neutrophils. We determined a positive correlation between circulating neutrophil and inflammatory monocyte counts and the severity of cardiovascular lesions early after LCWE injection. LCWE-induced KD-like vasculitis was associated with myocarditis and myocardial dysfunction, characterized by diminished ejection fraction and left ventricular remodeling, which worsened over time. We observed extensive fibrosis within the inflamed cardiac tissue early in the disease and myocardial fibrosis in later stages. Conclusion: Our findings indicate that increased circulating neutrophil counts in the acute phase are a reliable predictor of cardiovascular inflammation severity in LCWE-injected mice. Furthermore, long-term cardiac complications stemming from inflammatory cell infiltrations in the aortic root and coronary arteries, myocardial dysfunction, and myocardial fibrosis persist over long periods and are still detected up to 16 weeks after LCWE injection.


Assuntos
Parede Celular , Modelos Animais de Doenças , Fibrose , Lacticaseibacillus casei , Síndrome de Linfonodos Mucocutâneos , Vasculite , Animais , Camundongos , Parede Celular/imunologia , Vasculite/imunologia , Vasculite/etiologia , Vasculite/patologia , Síndrome de Linfonodos Mucocutâneos/imunologia , Síndrome de Linfonodos Mucocutâneos/complicações , Masculino , Miocardite/etiologia , Miocardite/patologia , Miocardite/imunologia , Inflamação/imunologia
8.
bioRxiv ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37205520

RESUMO

There is an increased incidence of autism among the children of women who take the anti-epileptic, mood stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNAseq data ob-tained from E12.5 fetal mouse brains 3 hours after VPA administration revealed that VPA significant-ly increased or decreased the expression of approximately 7,300 genes. No significant sex differ-ences in VPA-induced gene expression were observed. Expression of genes associated with neu-rodevelopmental disorders (NDDs) such as autism as well as neurogenesis, axon growth and syn-aptogenesis, GABAergic, glutaminergic and dopaminergic synaptic transmission, perineuronal nets, and circadian rhythms was dysregulated by VPA. Moreover, expression of 399 autism risk genes was significantly altered by VPA as was expression of 252 genes that have been reported to play fundamental roles in the development of the nervous system but are not otherwise linked to autism. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity in the postnatal and adult brain. The set of genes meeting these criteria pro-vides potential targets for future hypothesis-driven approaches to elucidating the proximal underly-ing causes of defective brain connectivity in NDDs such as autism.

9.
JCI Insight ; 8(14)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37279077

RESUMO

Kawasaki disease (KD) is the leading cause of acquired heart disease among children. Increased platelet counts and activation are observed during the course of KD, and elevated platelet counts are associated with higher risks of developing intravenous immunoglobulin resistance and coronary artery aneurysms. However, the role of platelets in KD pathogenesis remains unclear. Here, we analyzed transcriptomics data generated from the whole blood of patients with KD and discovered changes in the expression of platelet-related genes during acute KD. In the Lactobacillus casei cell wall extract (LCWE) murine model of KD vasculitis, LCWE injection increased platelet counts and the formation of monocyte-platelet aggregates (MPAs), upregulated the concentration of soluble P-selectin, and increased circulating thrombopoietin and interleukin 6 (IL-6). Furthermore, platelet counts correlated with the severity of cardiovascular inflammation. Genetic depletion of platelets (Mpl-/- mice) or treatment with an anti-CD42b antibody significantly reduced LCWE-induced cardiovascular lesions. Furthermore, in the mouse model, platelets promoted vascular inflammation via the formation of MPAs, which likely amplified IL-1B production. Altogether, our results indicate that platelet activation exacerbates the development of cardiovascular lesions in a murine model of KD vasculitis. These findings enhance our understanding of KD vasculitis pathogenesis and highlight MPAs, which are known to enhance IL-1B production, as a potential therapeutic target for this disorder.


Assuntos
Síndrome de Linfonodos Mucocutâneos , Vasculite , Animais , Camundongos , Síndrome de Linfonodos Mucocutâneos/genética , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Plaquetas/metabolismo , Modelos Animais de Doenças , Inflamação
10.
J Histochem Cytochem ; 70(11-12): 759-765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36514198

RESUMO

Immunocytochemical (ICC) techniques are frequently used in basic and clinical research. Here, we focus on the importance of using antisera/antibodies at optimal dilutions to achieve specificity and reduce costs. Unfortunately, the basic principle, the necessity to test method specificity of the staining by a series of increasing dilutions of primary antiserum/antibodies, is only occasionally seen in papers using ICC. Many researchers rely on the company's information or others' published data. In this study, we show examples with monoclonal antibodies used in the peroxidase-based ICC technique in mouse and guinea pig brain sections. We show images of ICC staining of phospho-S129 alpha-synuclein in A53T mice and NeuN in guinea pig brains and demonstrate that optimal staining with them can be achieved at least at two to three orders of magnitude higher dilutions than generally used in the literature. We strongly recommend that when antisera/antibodies are used for the first time in any laboratory, independent of what the manufacturer or vendor recommends or are found in the literature, a dilution curve should be set up to identify the optimal dilution. This practice provides not only the highest specificity but is also an economic approach.


Assuntos
Anticorpos Monoclonais , Peroxidase , Camundongos , Animais , Cobaias , Imuno-Histoquímica , Soros Imunes , Encéfalo
11.
Front Pediatr ; 9: 662953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026693

RESUMO

Kawasaki disease (KD), an acute febrile childhood illness and systemic vasculitis of unknown etiology, is the leading cause of acquired heart disease among children. Experimental data from murine models of KD vasculitis and transcriptomics data generated from whole blood of KD patients indicate the involvement of the NLRP3 inflammasome and interleukin-1 (IL-1) signaling in KD pathogenesis. MicroRNA-223 (miR-223) is a negative regulator of NLRP3 activity and IL-1ß production, and its expression has been reported to be upregulated during acute human KD; however, the specific role of miR-223 during KD vasculitis remains unknown. Here, using the Lactobacillus casei cell wall extract (LCWE) murine model of KD vasculitis, we demonstrate increased miR-223 expression in LCWE-induced cardiovascular lesions. Compared with control WT mice, LCWE-injected miR-223-deficient mice (miR223 -/y ) developed more severe coronary arteritis and aortitis, as well as more pronounced abdominal aorta aneurysms and dilations. The enhanced cardiovascular lesions and KD vasculitis observed in LCWE-injected miR223 -/y mice correlated with increased NLRP3 inflammasome activity and elevated IL-1ß production, indicating that miR-223 limits cardiovascular lesion development by downmodulating NLRP3 inflammasome activity. Collectively, our data reveal a previously unappreciated role of miR-223 in regulating innate immune responses and in limiting KD vasculitis and its cardiovascular lesions by constraining the NLRP3 inflammasome and the IL-1ß pathway. These data also suggest that miR-223 expression may be used as a marker for KD vasculitis pathogenesis and provide a novel therapeutic target.

12.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34403365

RESUMO

Kawasaki disease (KD) is the leading cause of acquired heart disease among children. Murine and human data suggest that the NLRP3-IL-1ß pathway is the main driver of KD pathophysiology. NLRP3 can be activated during defective autophagy/mitophagy. We used the Lactobacillus casei cell wall extract (LCWE) murine model of KD vasculitis to examine the role of autophagy/mitophagy on cardiovascular lesion development. LCWE-injected mice had impaired autophagy/mitophagy and increased levels of ROS in cardiovascular lesions, together with increased systemic 8-OHdG release. Enhanced autophagic flux significantly reduced cardiovascular lesions in LCWE-injected mice, whereas autophagy blockade increased inflammation. Vascular smooth muscle cell-specific deletion of Atg16l1 and global Parkin-/- significantly increased disease formation, supporting the importance of autophagy/mitophagy in this model. Ogg1-/- mice had significantly increased lesions with increased NLRP3 activity, whereas treatment with MitoQ reduced vascular tissue inflammation, ROS production, and systemic 8-OHdG release. Treatment with MN58b or Metformin (increasing AMPK and reducing ROS) resulted in decreased cardiovascular lesions. Our results demonstrate that impaired autophagy/mitophagy and ROS-dependent damage exacerbate the development of murine KD vasculitis. This pathway can be efficiently targeted to reduce disease severity. These findings enhance our understanding of KD pathogenesis and identify potentially novel therapeutic avenues for KD treatment.


Assuntos
Autofagia , Mitofagia , Síndrome de Linfonodos Mucocutâneos/patologia , Síndrome de Linfonodos Mucocutâneos/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , 8-Hidroxi-2'-Desoxiguanosina/sangue , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Butanos/farmacologia , Extratos Celulares , Parede Celular , Vasos Coronários/patologia , DNA Glicosilases/genética , Modelos Animais de Doenças , Hipoglicemiantes/farmacologia , Lacticaseibacillus casei , Masculino , Metformina/farmacologia , Camundongos , Mitofagia/genética , Síndrome de Linfonodos Mucocutâneos/induzido quimicamente , Síndrome de Linfonodos Mucocutâneos/genética , Miocárdio/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Compostos Organofosforados/farmacologia , Compostos de Piridínio/farmacologia , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquitina-Proteína Ligases/genética
13.
JACC Basic Transl Sci ; 5(6): 582-598, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32613145

RESUMO

In the Ldlr -/- mouse model of atherosclerosis, female Nlrp3 -/- bone marrow chimera and Nlrp3 -/- mice developed significantly smaller lesions in the aortic sinus and decreased lipid content in aorta en face, but a similar protection was not observed in males. Ovariectomized female mice lost protection from atherosclerosis in the setting of NLRP3 deficiency, whereas atherosclerosis showed a greater dependency on NLRP3 in castrated males. Thus, castration increased the dependency of atherosclerosis on the NLRP3 inflammasome, suggesting that testosterone may block inflammation in atherogenesis. Conversely, ovariectomy reduced the dependency on NLRP3 inflammasome components for atherogenesis, suggesting that estrogen may promote inflammasome-mediated atherosclerosis.

14.
Pharmaceuticals (Basel) ; 13(6)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531919

RESUMO

Hot flushes are best-known for affecting menopausal women, but men who undergo life-saving castration due to androgen-sensitive prostate cancer also suffer from these vasomotor symptoms. Estrogen deficiency in these patients is a direct consequence of androgen deprivation, because estrogens (notably 17ß-estradiol, E2) are produced from testosterone. Although estrogens alleviate hot flushes in these patients, they also cause adverse systemic side effects. Because only estrogens can provide mitigation of hot flushes on the basis of current clinical practices, there is an unmet need for an effective and safe pharmacotherapeutic intervention that would also greatly enhance patient adherence. To this end, we evaluated treatment of orchidectomized (ORDX) rats with 10ß, 17ß-dihydroxyestra-1,4-dien-3-one (DHED), a brain-selective bioprecursor prodrug of E2. A pilot pharmacokinetic study using oral administration of DHED to these animals revealed the formation of E2 in the brain without the appearance of the hormone in the circulation. Therefore, DHED treatment alleviated androgen deprivation-associated hot flushes without peripheral impact in the ORDX rat model. Concomitantly, we showed that DHED-derived E2 induced progesterone receptor gene expression in the hypothalamus without stimulating galanin expression in the anterior pituitary, further indicating the lack of systemic estrogen exposure upon oral treatment with DHED.

15.
Nat Commun ; 11(1): 1613, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235862

RESUMO

In men, the incidence of melanoma rises rapidly after age 50, and nearly two thirds of melanoma deaths are male. The immune system is known to play a key role in controlling the growth and spread of malignancies, but whether age- and sex-dependent changes in immune cell function account for this effect remains unknown. Here, we show that in castrated male mice, neutrophil maturation and function are impaired, leading to elevated metastatic burden in two models of melanoma. Replacement of testosterone effectively normalized the tumor burden in castrated male mice. Further, the aberrant neutrophil phenotype was also observed in prostate cancer patients receiving androgen deprivation therapy, highlighting the evolutionary conservation and clinical relevance of the phenotype. Taken together, these results provide a better understanding of the role of androgen signaling in neutrophil function and the impact of this biology on immune control of malignancies.


Assuntos
Antagonistas de Androgênios/farmacologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Testosterona/metabolismo , Antagonistas de Androgênios/uso terapêutico , Androgênios , Animais , Antineoplásicos/farmacologia , Medula Óssea/patologia , Transplante de Medula Óssea , Modelos Animais de Doenças , Feminino , Terapia de Reposição Hormonal/métodos , Pulmão/patologia , Masculino , Melanoma/imunologia , Melanoma/patologia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Testosterona/imunologia
16.
Front Immunol ; 11: 554725, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072095

RESUMO

Systemic Lupus Erythematosus (SLE) is a chronic inflammatory autoimmune disease in which type I interferons (IFN) play a key role. The IFN response can be triggered when oxidized DNA engages the cytosolic DNA sensing platform cGAS-STING, but the repair mechanisms that modulate this process and govern disease progression are unclear. To gain insight into this biology, we interrogated the role of oxyguanine glycosylase 1 (OGG1), which repairs oxidized guanine 8-Oxo-2'-deoxyguanosine (8-OH-dG), in the pristane-induced mouse model of SLE. Ogg1-/- mice showed increased influx of Ly6Chi monocytes into the peritoneal cavity and enhanced IFN-driven gene expression in response to short-term exposure to pristane. Loss of Ogg1 was associated with increased auto-antibodies (anti-dsDNA and anti-RNP), higher total IgG, and expression of interferon stimulated genes (ISG) to longer exposure to pristane, accompanied by aggravated skin pathology such as hair loss, thicker epidermis, and increased deposition of IgG in skin lesions. Supporting a role for type I IFNs in this model, skin lesions of Ogg1-/- mice had significantly higher expression of type I IFN genes (Isg15, Irf9, and Ifnb). In keeping with loss of Ogg1 resulting in dysregulated IFN responses, enhanced basal and cGAMP-dependent Ifnb expression was observed in BMDMs from Ogg1-/- mice. Use of the STING inhibitor, H151, reduced both basal and cGAMP-driven increases, indicating that OGG1 regulates Ifnb expression through the cGAS-STING pathway. Finally, in support for a role for OGG1 in the pathology of cutaneous disease, reduced OGG1 expression in monocytes associated with skin involvement in SLE patients and the expression of OGG1 was significantly lower in lesional skin compared with non-lesional skin in patients with Discoid Lupus. Taken together, these data support an important role for OGG1 in protecting against IFN production and SLE skin disease.


Assuntos
Dano ao DNA/imunologia , Lúpus Eritematoso Cutâneo/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Pele/imunologia , Terpenos/efeitos adversos , Animais , DNA Glicosilases/deficiência , DNA Glicosilases/imunologia , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Lúpus Eritematoso Cutâneo/induzido quimicamente , Lúpus Eritematoso Cutâneo/genética , Lúpus Eritematoso Cutâneo/patologia , Lúpus Eritematoso Sistêmico/induzido quimicamente , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/patologia , Oxirredução/efeitos dos fármacos , Pele/patologia , Terpenos/farmacologia
17.
Biol Reprod ; 81(2): 406-14, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19403930

RESUMO

The foundation for development of the male reproduction system occurs in utero, but relatively little is known about the regulation of primate fetal testis maturation. Our laboratories have shown that estrogen regulates key aspects of the physiology of pregnancy and fetal development. Therefore, in the present study, we characterized and quantified germ cells and Sertoli cells in the fetal baboon testis in late normal gestation (i.e., Day 165; term is 184 days) and in baboons administered the aromatase inhibitor letrozole throughout the second half of gestation to assess the impact of endogenous estrogen on fetal testis development. In untreated baboons, the seminiferous cords were comprised of undifferentiated (i.e., type A) spermatogonia classified by their morphology as dark (Ad) or pale (Ap), gonocytes (precursors of type A spermatogonia), unidentified cells (UI), and Sertoli cells. In letrozole-treated baboons, serum estradiol levels were decreased by 95%. The number per milligram of fetal testis (x10(4)) of Ad spermatogonia (0.42 +/- 0.11) was 45% lower (P = 0.03), and that of gonocytes (0.58 +/- 0.06) and UI (0.45 +/- 0.12) was twofold greater (P < 0.01 and P = 0.06, respectively), than in untreated baboons. Moreover, in the seminiferous cords of estrogen-deprived baboons, the basement membrane appeared fragmented, the germ cells and Sertoli cells appeared disorganized, and vacuoles were present. We conclude that endogenous estrogen promotes fetal testis development and that the changes in the germ cell population in the estrogen-deprived baboon fetus may impair spermatogenesis and fertility in adulthood.


Assuntos
Estrogênios/fisiologia , Papio anubis/embriologia , Túbulos Seminíferos/crescimento & desenvolvimento , Espermatozoides/crescimento & desenvolvimento , Testículo/embriologia , Análise de Variância , Animais , Inibidores da Aromatase/farmacologia , Membrana Basal/citologia , Membrana Basal/efeitos dos fármacos , Membrana Basal/embriologia , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Estradiol/sangue , Estrogênios/deficiência , Feminino , Peso Fetal/efeitos dos fármacos , Hormônio Foliculoestimulante/sangue , Letrozol , Hormônio Luteinizante/sangue , Masculino , Nitrilas/farmacologia , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Distribuição Aleatória , Túbulos Seminíferos/citologia , Túbulos Seminíferos/efeitos dos fármacos , Células de Sertoli/citologia , Células de Sertoli/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espermatozoides/citologia , Espermatozoides/efeitos dos fármacos , Estatísticas não Paramétricas , Testículo/efeitos dos fármacos , Testículo/enzimologia , Testículo/ultraestrutura , Testosterona/sangue , Triazóis/farmacologia
18.
Sci Rep ; 6: 30721, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27477453

RESUMO

Estrogen deprivation has a profound effect on the female brain. One of the most obvious examples of this condition is hot flushes. Although estrogens relieve these typical climacteric symptoms, many women do not want to take them owing to unwanted side-effects impacting, for example, the uterus, breast and blood. Therefore, there is a need for developing safer estrogen therapies. We show here that treatment with 10ß,17ß-dihydroxyestra-1,4-dien-3-one (DHED), a novel brain-targeting bioprecursor prodrug of the main human estrogen, 17ß-estradiol, alleviates hot flushes in rat models of thermoregulatory dysfunction of the brain. Oral administration of DHED elicits a significant reduction of tail skin temperature (TST) rise representing hot flushes in the morphine-dependent ovariectomized rat model and results in the restoration of estrogen deprivation-induced loss of diurnal rhythm in TST. These beneficial effects occur without detrimental peripheral hormonal exposure; thus, the treatment avoids potentially harmful stimulation of estrogen-sensitive peripheral organs, including the uterus and the anterior pituitary, or the proliferation of MCF-7a breast cancer cell xenografts. Our promising preclinical assessments warrant further considerations of DHED for the development of a brain-selective 17ß-estradiol therapy to relieve hot flushes without undesirable peripheral side-effects.


Assuntos
Estradiol/administração & dosagem , Estrogênios/administração & dosagem , Fogachos/tratamento farmacológico , Pró-Fármacos/administração & dosagem , Administração Oral , Animais , Ratos , Resultado do Tratamento
19.
Endocrinology ; 146(6): 2760-5, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15790727

RESUMO

Among the many factors that integrate the activity of the GnRH neuronal system, estrogens play the most important role. In females, estrogen, in addition to the negative feedback, also exhibits a positive feedback influence upon the activity and output of GnRH neurons to generate the preovulatory LH surge and ovulation. Until recently, the belief has been that the GnRH neurons do not contain estrogen receptors (ERs) and that the action of estrogen upon GnRH neurons is indirect involving several, estrogen-sensitive neurotransmitter and neuromodulator systems that trans-synaptically regulate the activity of the GnRH neurons. Based on our recent findings that GnRH neurons of the female rat coexpress galanin, that galanin is a potent GnRH-releasing peptide, and that ERbeta is present in GnRH neurons, we have evaluated the effect of 17beta-estradiol and two ERbeta-selective agonists (WAY-200070, WAY-166818) on the expression of galanin within GnRH neurons. By combining immunocytochemistry for GnRH and in situ hybridization histochemistry for galanin, we demonstrate that 17beta-estradiol (20 mug/kg, sc) stimulates galanin expression within GnRH-immunoreactive neurons in a time-dependent manner. A significant increase was observed 2 h after its administration to ovariectomized rats. However, a more robust expression required 3-d treatment regimen. Treatment with the beta-selective ligands resulted in similar observations, although no statistical analysis is available for the 2 hr survival. These observations strongly suggest that estrogen and the ERbeta-selective ligands stimulate galanin expression within GnRH neurons via ERbeta, although an indirect mechanism via interneurons still cannot be ruled out.


Assuntos
Estradiol/farmacologia , Receptor beta de Estrogênio/metabolismo , Galanina/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Área Pré-Óptica/citologia , Animais , Anticorpos , Estradiol/metabolismo , Receptor beta de Estrogênio/agonistas , Feminino , Galanina/genética , Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/imunologia , Imuno-Histoquímica , Ligantes , Ovariectomia , Área Pré-Óptica/fisiologia , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley
20.
Biochem Pharmacol ; 93(4): 506-18, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25542997

RESUMO

The G-protein-coupled receptor 35 (GPR35) was de-orphanized after the discovery that kynurenic acid (KYNA), an endogenous tryptophan metabolite, acts as an agonist of this receptor. Abundant evidence supports that GPR35 exists primarily in peripheral tissues. Here, we tested the hypothesis that GPR35 exists in the hippocampus and influences the neuronal activity. Fluorescence immunohistochemical staining using an antibody anti-NeuN (a neuronal marker), an antibody anti-GFAP (a glial marker), and an antibody anti-GPR35 revealed that neurons in the stratum oriens, stratum pyramidale, and stratum radiatum of the CA1 field of the hippocampus express GPR35. To determine the presence of functional GPR35 in the neurocircuitry, we tested the effects of various GPR35 agonists on the frequency of spontaneous action potentials recorded as fast current transients (CTs) from stratum radiatum interneurons (SRIs) under cell-attached configuration in rat hippocampal slices. Bath application of the GPR35 agonists zaprinast (1-10 µM), dicumarol (50-100 µM), pamoic acid (500-1000 µM), and amlexanox (3 µM) produced a concentration- and time-dependent reduction in the frequency of CTs. Superfusion of the hippocampal slices with the GPR35 antagonist ML145 (1 µM) increased the frequency of CTs and reduced the inhibitory effect of zaprinast. Bath application of phosphodiesterase 5 inhibitor sildenafil (1 or 5 µM) was ineffective, whereas a subsequent application of zaprinast was effective in reducing the CT frequency. The present results demonstrate for the first time that functional GPR35s are expressed by CA1 neurons and suggest that these receptors can be molecular targets for controlling neuronal activity in the hippocampus.


Assuntos
Região CA1 Hipocampal/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Animais , Animais Recém-Nascidos , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA