Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Sensors (Basel) ; 21(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401728

RESUMO

Endoscopes are used routinely in modern medicine for in-vivo imaging of luminal organs. Technical advances in the micro-electro-mechanical system (MEMS) and optical fields have enabled the further miniaturization of endoscopes, resulting in the ability to image previously inaccessible small-caliber luminal organs, enabling the early detection of lesions and other abnormalities in these tissues. The development of scanning fiber endoscopes supports the fabrication of small cantilever-based imaging devices without compromising the image resolution. The size of an endoscope is highly dependent on the actuation and scanning method used to illuminate the target image area. Different actuation methods used in the design of small-sized cantilever-based endoscopes are reviewed in this paper along with their working principles, advantages and disadvantages, generated scanning patterns, and applications.

2.
Opt Express ; 26(14): 18758-18772, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114048

RESUMO

We recently demonstrated a new two-dimensional imaging paradigm called dual-beam manually actuated distortion-corrected imaging (DMDI). This technique uses a single mechanical scanner and two spatially separated beams to determine relative sample velocity and simultaneously corrects image distortions due to manual actuation. DMDI was first demonstrated using a rotating dual-beam micromotor catheter. Here, we present a new implementation of DMDI using a single axis galvanometer to scan a pair of beams in approximately parallel lines onto a sample. Furthermore, we present a method for automated distortion correction based on frame co-registration between images acquired by the two beams. Distortion correction is possible for manually actuated motion both perpendicular and parallel to the galvanometer-scanned lines. Using en face OCT as the imaging modality, we demonstrate DMDI and the automated distortion correction algorithm for imaging a printed paper phantom, a dragon fruit, and a fingerprint.

3.
Opt Express ; 25(18): 22164-22177, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-29041505

RESUMO

We present a new paradigm for performing two-dimensional scanning called dual-beam manually-actuated distortion-corrected imaging (DMDI). DMDI operates by imaging the same object with two spatially-separated beams that are being mechanically scanned rapidly in one dimension with slower manual actuation along a second dimension. Registration of common features between the two imaging channels allows remapping of the images to correct for distortions due to manual actuation. We demonstrate DMDI using a 4.7 mm OD rotationally scanning dual-beam micromotor catheter (DBMC). The DBMC requires a simple, one-time calibration of the beam paths by imaging a patterned phantom. DMDI allows for distortion correction of non-uniform axial speed and rotational motion of the DBMC. We show the utility of this technique by demonstrating en face OCT image distortion correction of a manually-scanned checkerboard phantom and fingerprint scan.

4.
Opt Lett ; 41(14): 3209-12, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27420497

RESUMO

High-resolution imaging from within airways may allow new methods for studying lung disease. In this work, we report an endoscopic imaging system capable of high-resolution autofluorescence imaging (AFI) and optical coherence tomography (OCT) in peripheral airways using a 0.9 mm diameter double-clad fiber (DCF) catheter. In this system, AFI excitation light is coupled into the core of the DCF, enabling tightly focused excitation light while maintaining efficient collection of autofluorescence emission through the large diameter inner cladding of the DCF. We demonstrate the ability of this imaging system to visualize pulmonary vasculature as small as 12 µm in vivo.

5.
Biomed Eng Online ; 14: 96, 2015 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-26499452

RESUMO

BACKGROUND: Cervical cancer remains a major health problem, especially in developing countries. Colposcopic examination is used to detect high-grade lesions in patients with a history of abnormal pap smears. New technologies are needed to improve the sensitivity and specificity of this technique. We propose to test the potential of fluorescence confocal microscopy to identify high-grade lesions. METHODS: We examined the quantification of ex vivo confocal fluorescence microscopy to differentiate among normal cervical tissue, low-grade Cervical Intraepithelial Neoplasia (CIN), and high-grade CIN. We sought to (1) quantify nuclear morphology and tissue architecture features by analyzing images of cervical biopsies; and (2) determine the accuracy of high-grade CIN detection via confocal microscopy relative to the accuracy of detection by colposcopic impression. Forty-six biopsies obtained from colposcopically normal and abnormal cervical sites were evaluated. Confocal images were acquired at different depths from the epithelial surface and histological images were analyzed using in-house software. RESULTS: The features calculated from the confocal images compared well with those features obtained from the histological images and histopathological reviews of the specimens (obtained by a gynecologic pathologist). The correlations between two of these features (the nuclear-cytoplasmic ratio and the average of three nearest Delaunay-neighbors distance) and the grade of dysplasia were higher than that of colposcopic impression. The sensitivity of detecting high-grade dysplasia by analysing images collected at the surface of the epithelium, and at 15 and 30 µm below the epithelial surface were respectively 100, 100, and 92 %. CONCLUSIONS: Quantitative analysis of confocal fluorescence images showed its capacity for discriminating high-grade CIN lesions vs. low-grade CIN lesions and normal tissues, at different depth of imaging. This approach could be used to help clinicians identify high-grade CIN in clinical settings.


Assuntos
Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Displasia do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/diagnóstico , Adulto , Colposcopia , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Fenótipo , Neoplasias do Colo do Útero/patologia , Adulto Jovem , Displasia do Colo do Útero/patologia
6.
Opt Express ; 22(7): 7399-415, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718115

RESUMO

We report a technique for blood flow detection using split spectrum Doppler optical coherence tomography (ssDOCT) that shows improved sensitivity over existing Doppler OCT methods. In ssDOCT, the Doppler signal is averaged over multiple sub-bands of the interferogram, increasing the SNR of the Doppler signal. We explore the parameterization of this technique in terms of number of sub-band windows, width and overlap of the windows, and their effect on the Doppler signal to noise in a flow phantom. Compared to conventional DOCT, ssDOCT processing has increased flow sensitivity. We demonstrate the effectiveness of ssDOCT in-vivo for intravascular flow detection within a porcine carotid artery and for microvascular vessel detection in human pulmonary imaging, using rotary catheter probes. To our knowledge, this is the first report of visualizing in-vivo Doppler flow patterns adjacent to stent struts in the carotid artery.


Assuntos
Algoritmos , Velocidade do Fluxo Sanguíneo/fisiologia , Catéteres , Fluxometria por Laser-Doppler/instrumentação , Imagens de Fantasmas , Tomografia de Coerência Óptica/instrumentação , Animais , Humanos , Suínos
7.
Opt Express ; 22(7): 7617-24, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718136

RESUMO

We are investigating spectroscopic devices designed to make in vivo cervical tissue measurements to detect pre-cancerous and cancerous lesions. All devices have the same design and ideally should record identical measurements. However, we observed consistent differences among them. An experiment was designed to study the sources of variation in the measurements recorded. Here we present a log additive statistical model that incorporates the sources of variability we identified. Based on this model, we estimated correction factors from the experimental data needed to eliminate the inter-device variability and other sources of variation. These correction factors are intended to improve the accuracy and repeatability of such devices when making future measurements on patient tissue.


Assuntos
Modelos Estatísticos , Espectrometria de Fluorescência/métodos , Análise Espectral/instrumentação , Neoplasias do Colo do Útero/diagnóstico , Feminino , Humanos
8.
Opt Lett ; 39(12): 3638-41, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978556

RESUMO

We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.


Assuntos
Tomografia de Coerência Óptica/métodos , Emulsões , Endoscopia/instrumentação , Endoscopia/métodos , Desenho de Equipamento , Tecnologia de Fibra Óptica , Humanos , Miniaturização , Fibras Ópticas , Fenômenos Ópticos , Fosfolipídeos , Sistema Respiratório/anatomia & histologia , Óleo de Soja , Tomografia de Coerência Óptica/instrumentação
9.
Cancers (Basel) ; 16(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38893263

RESUMO

This paper aims to simplify the application of optical coherence tomography (OCT) for the examination of subsurface morphology in the oral cavity and reduce barriers towards the adoption of OCT as a biopsy guidance device. The aim of this work was to develop automated software tools for the simplified analysis of the large volume of data collected during OCT. Imaging and corresponding histopathology were acquired in-clinic using a wide-field endoscopic OCT system. An annotated dataset (n = 294 images) from 60 patients (34 male and 26 female) was assembled to train four unique neural networks. A deep learning pipeline was built using convolutional and modified u-net models to detect the imaging field of view (network 1), detect artifacts (network 2), identify the tissue surface (network 3), and identify the presence and location of the epithelial-stromal boundary (network 4). The area under the curve of the image and artifact detection networks was 1.00 and 0.94, respectively. The Dice similarity score for the surface and epithelial-stromal boundary segmentation networks was 0.98 and 0.83, respectively. Deep learning (DL) techniques can identify the location and variations in the epithelial surface and epithelial-stromal boundary in OCT images of the oral mucosa. Segmentation results can be synthesized into accessible en face maps to allow easier visualization of changes.

10.
Biomed Eng Lett ; 14(3): 583-592, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38645593

RESUMO

Optical coherence tomography (OCT) is becoming a more common endoscopic imaging modality for detecting and treating disease given its high resolution and image quality. To use OCT for 3-dimensional imaging of small lumen, embedding an optical scanner at the distal end of an endoscopic probe for circumferential scanning the probing light is a promising way to implement high-quality imaging unachievable with the conventional method of revolving an entire probe. To this end, the present work proposes a hollow and planar micro rotary actuator for its use as an endoscopic distal scanner. A miniaturized design of this ferrofluid-assisted electromagnetic actuator is prototyped to act as a full 360° optical scanner, which is integrated at the tip of a fiber-optic probe together with a gradient-index lens for use with OCT. The scanner is revealed to achieve a notably improved dynamic performance that shows a maximum speed of 6500 rpm, representing 325% of the same reported with the preceding design, while staying below the thermal limit for safe in-vivo use. The scanner is demonstrated to perform real-time OCT using human fingers as live tissue samples for the imaging tests. The acquired images display no shadows from the electrical wires to the scanner, given its hollow architecture that allows the probing light to pass through the actuator body, as well as the quality high enough to differentiate the dermis from the epidermis while resolving individual sweat glands, proving the effectiveness of the prototyped scanner design for endoscopic OCT application.

11.
Cancers (Basel) ; 16(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39123478

RESUMO

Optical coherence tomography is a noninvasive imaging technique that provides three-dimensional visualization of subsurface tissue structures. OCT has been proposed and explored in the literature as a tool to assess oral cancer status, select biopsy sites, or identify surgical margins. Our endoscopic OCT device can generate widefield (centimeters long) imaging of lesions at any location in the oral cavity-but it is challenging for raters to quantitatively assess and score large volumes of data. Leveraging a previously developed epithelial segmentation network, this work develops quantifiable biomarkers that provide direct measurements of tissue properties in three dimensions. We hypothesize that features related to morphology, tissue attenuation, and contrast between tissue layers will be able to provide a quantitative assessment of disease status (dysplasia through carcinoma). This work retrospectively assesses seven biomarkers on a lesion-contralateral matched OCT dataset of the lateral and ventral tongue (40 patients, 70 sites). Epithelial depth and loss of epithelial-stromal boundary visualization provide the strongest discrimination between disease states. The stroma optical attenuation coefficient provides a distinction between benign lesions from dysplasia and carcinoma. The stratification biomarkers visualize subsurface changes, which provides potential for future utility in biopsy site selection or treatment margin delineation.

12.
Clin Physiol Funct Imaging ; 42(5): 308-319, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35522086

RESUMO

Optical coherence tomography (OCT) is an imaging methodology that can be used to assess human airways. OCT avoids the harmful effects of ionizing radiation and has a high spatial resolution making it well suited for imaging the structure of small airways. Analysis of OCT airway images has typically been performed manually by tracing the airway with a relatively high coefficient of variation. The purpose of this study was to develop an analysis tool to reduce the inter- and intra-observer reproducibility of OCT and improve the ability to detect differences in airways. OCT images from healthy, young human volunteers were used to develop and test the OCT software. Measurement software was developed to allow the conversion of the original image into a grayscale image and was followed by an enhancement operation to brighten the image, and contour measurement. A total of 140 OCT images, 70 small (<2 mm) and 70 medium (2-4 mm) sized airways were analyzed. The inter- and intraobserver reproducibility of airway measurements ranged for strong to very strong in the small-sized airways. For medium-sized airways the reproducibility was considered moderate. Bland-Altman bias was low between observers and observations for all measures. The minimal detectable differences in the airway measurements with our semi-automated software were lower relative to manual tracing in medium-sized airways. Our software improves the ability to perform quantitative OCT analysis and may help to quantify the extent of airway remodelling in respiratory disease or elite athletes in future studies.


Assuntos
Software , Tomografia de Coerência Óptica , Humanos , Reprodutibilidade dos Testes , Tomografia de Coerência Óptica/métodos
13.
J Biomed Opt ; 26(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34263577

RESUMO

SIGNIFICANCE: Chronic lung allograft dysfunction (CLAD) is the leading cause of death in transplant patients who survive past the first year post-transplant. Current diagnosis is based on sustained decline in lung function; there is a need for tools that can identify CLAD onset. AIM: Endoscopic optical coherence tomography (OCT) can visualize structural changes in the small airways, which are of interest in CLAD progression. We aim to identify OCT features in the small airways of lung allografts that correlate with CLAD status. APPROACH: Imaging was conducted with an endoscopic rotary pullback OCT catheter during routine bronchoscopy procedures (n = 54), collecting volumetric scans of three segmental airways per patient. Six features of interest were identified, and four blinded raters scored the dataset on the presence and intensity of each feature. RESULTS: Airway dilation (AD) was the only feature found to significantly (p < 0.003) correlate with CLAD diagnosis (R = 0.40 to 0.61). AD could also be fairly consistently scored between raters (κinter-rater = 0.48, κintra-rater = 0.64). There is a stronger relationship between AD and the combined obstructive and restrictive (BOS + RAS) phenotypes than the obstructive-only (BOS) phenotype for two raters (R = 0.92 , 0.94). CONCLUSIONS: OCT examination of small AD shows potential as a diagnostic indicator for CLAD and CLAD phenotype and merits further exploration.


Assuntos
Transplante de Pulmão , Disfunção Primária do Enxerto , Aloenxertos , Dilatação , Seguimentos , Humanos , Pulmão/diagnóstico por imagem , Transplante de Pulmão/efeitos adversos , Estudos Retrospectivos , Tomografia de Coerência Óptica
14.
J Appl Physiol (1985) ; 131(6): 1750-1761, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34709072

RESUMO

We examined the relationship between the work of breathing (Wb) during exercise and in vivo measures of airway size in healthy females and males. We hypothesized that sex differences in airway luminal area would explain the larger resistive Wb during exercise in females. Healthy participants (n = 11 females and n = 11 males; 19-30 yr) completed a cycle exercise test to exhaustion where Wb was assessed using an esophageal balloon catheter. On a separate day, each participant underwent a bronchoscopy procedure for optical coherence tomography measures of seven airways. In vivo measures of luminal area were made for the fourth to eighth airway generations. A composite index of airway size was calculated as the sum of the luminal area for each generation, and the total area was calculated based on Weibel's model. We found that index of airway size (males: 37.4 ± 6.3 mm2 vs. females: 27.5 ± 7.4 mm2) and airway area calculated based on Weibel's model (males: 2,274 ± 557 mm2 vs. females: 1,594 ± 389 mm2) were significantly larger in males (both P = 0.003). When minute ventilation was greater than ∼60 L·min-1, the resistive Wb was higher in females. At the highest equivalent flow achieved by all subjects, resistance to inspired flow was larger in females and significantly associated with two measures of airway size in all subjects: index of airway size (r = 0.524, P = 0.012) and Weibel area (r = 0.525, P = 0.012). Our findings suggest that innate sex differences in luminal area result in a greater resistive Wb during exercise in females compared with males.NEW & NOTEWORTHY We hypothesized that the higher resistive work of breathing in females compared with males during high-intensity exercise is due to smaller airways. In vivo measures of the fourth to eighth airway generations made using optical coherence tomography show that females tend to have smaller airway luminal areas of the fourth to sixth airway generations. Sex differences in airway luminal area result in a greater resistive work of breathing during exercise in females compared with males.


Assuntos
Exercício Físico , Trabalho Respiratório , Teste de Esforço , Feminino , Humanos , Masculino , Respiração , Sistema Respiratório
15.
Physiol Rep ; 9(1): e14657, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33369886

RESUMO

Airway luminal area (Ai ) influences respiratory mechanics during dynamic exercise; however, previous studies have investigated the relationship between airway anatomy and physiological function in different groups of individuals. The purpose of this study was to determine the effect of Ai on respiratory mechanics by making in vivo measures of airway dimensions and work of breathing (Wb) in the same individuals. Healthy participants (3F/2M; 23-45 years) completed a cycle exercise test to exhaustion. During exercise, Wb was assessed using an esophageal balloon catheter, while simultaneously assessing minute ventilation ( V˙E ). On a separate day, subjects underwent a bronchoscopy procedure to capture optical coherence tomography (OCT) measures of three airways in the right lung. Each participant's Wb- V˙E data were fit to a non-linear regression equation (Wb = a V˙E3  + b V˙E2 ) that partitions Wb into its turbulent resistive (a) and viscoelastic (b) components. Measures of Ai and luminal diameter were made for the 4th-6th airway generations. A composite index of airway size was calculated as the sum of the Ai for each generation and the total area of the 4th-6th generation was calculated based on Weibel's model. Constant a was significantly correlated to the Weibel model total airway area (r = -0.94, p = 0.017) and index of airway size (r = -0.929, p = 0.023), whereas constant b was not associated with either measure (both p > 0.05). We found that individuals who had the smallest Ai had the highest resistive Wb and our findings provide the basis for further study of the relationship between airway size and respiratory mechanics during exercise.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Teste de Esforço/métodos , Exercício Físico/fisiologia , Pulmão/fisiologia , Adulto , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Mecânica Respiratória , Tomografia de Coerência Óptica/métodos , Trabalho Respiratório , Adulto Jovem
17.
J Biomed Opt ; 25(10)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33084256

RESUMO

SIGNIFICANCE: Diagnosis of suspicious lung nodules requires precise collection of relevant biopsies for histopathological analysis. Using optical coherence tomography and autofluorescence imaging (OCT-AFI) to improve diagnostic yield in parts of the lung inaccessible to larger imaging methods may allow for reducing complications related to the alternative of computed tomography-guided biopsy. AIM: Feasibility of OCT-AFI combined with a commercially available lung biopsy needle was demonstrated for visualization of needle puncture sites in airways with diameters as small as 1.9 mm. APPROACH: A miniaturized OCT-AFI imaging stylet was developed to be inserted through an 18G biopsy needle. We present design considerations and procedure development for image-guided biopsy. Ex vivo and in vivo porcine studies were performed to demonstrate the feasibility of the procedure and the device. RESULTS: OCT-AFI scans were obtained ex vivo and in vivo. Discrimination of pullback site is clear. CONCLUSIONS: Use of the device is shown to be feasible in vivo. Images obtained show the stylet is effective at providing structural information at the puncture site that can be used to assess the diagnostic potential of the sample prior to collection.


Assuntos
Imagem Óptica , Tomografia de Coerência Óptica , Animais , Biópsia por Agulha , Estudos de Viabilidade , Biópsia Guiada por Imagem , Suínos
18.
J Biomed Opt ; 14(2): 024008, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19405738

RESUMO

Confocal microendoscopy permits the acquisition of high-resolution real-time confocal images of bronchial mucosa via the instrument channel of an endoscope. We report here on the construction and validation of a confocal fluorescence microendoscope and its use to acquire images of bronchial epithelium in vivo. Our objective is to develop an imaging method that can distinguish preneoplastic lesions from normal epithelium to enable us to study the natural history of these lesions and the efficacy of chemopreventive agents without biopsy removal of the lesion that can introduce a spontaneous regression bias. The instrument employs a laser-scanning engine and bronchoscope-compatible confocal probe consisting of a fiber-optic image guide and a graded-index objective lens. We assessed the potential of topical application of physiological pH cresyl violet (CV) as a fluorescence contrast-enhancing agent for the visualization of tissue morphology. Images acquired ex vivo with the confocal microendoscope were first compared with a bench-top confocal fluorescence microscope and conventional histology. Confocal images from five sites topically stained with CV were then acquired in vivo from high-risk smokers and compared to hematoxylin and eosin stained sections of biopsies taken from the same site. Sufficient contrast in the confocal imagery was obtained to identify cells in the bronchial epithelium. However, further improvements in the miniature objective lens are required to provide sufficient axial resolution for accurate classification of preneoplastic lesions.


Assuntos
Neoplasias Brônquicas/patologia , Endoscópios , Aumento da Imagem/instrumentação , Microscopia Confocal/instrumentação , Microscopia de Fluorescência/instrumentação , Mucosa Respiratória/patologia , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Miniaturização , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Appl Opt ; 48(30): 5802-10, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19844318

RESUMO

Fibered image guides for confocal reflectance endomicroscopy suffer from Fresnel reflections at the fiber terminals, which can limit signal-to-noise ratio in these systems. A model that describes these terminal reflections is presented to better understand how they can be managed most effectively. An expression for the refractive index of termination that minimizes the reflection as a function of the fiber's normalized frequency is derived for step-index fibers, while a graphical solution is presented for graded-index fibers. The model predicts that terminal reflections from graded-index fibers are more sensitive to variations in fiber size and changes in wavelength than step-index fibers. A method is also presented to measure the refractive index that allows one to minimize the terminal reflections in an image guide. The technique uses the inherent mode coupling of the fibers in the image guide, allowing the isolation and measurement of reflections from only one end of the fiber. An achievable minimum backreflection of -36 dB was measured at 635 nm in a commercial image guide with 30,000 fibers.


Assuntos
Tecnologia de Fibra Óptica , Microscopia Confocal/instrumentação , Algoritmos , Diagnóstico por Imagem/métodos , Desenho de Equipamento , Humanos , Luz , Microscopia/métodos , Microscopia Confocal/métodos , Modelos Estatísticos , Distribuição Normal , Fibras Ópticas , Óptica e Fotônica , Refratometria/instrumentação , Refratometria/métodos , Espalhamento de Radiação
20.
J Biomed Opt ; 25(3): 1-7, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31650742

RESUMO

A fiber-based endoscopic imaging system combining narrowband red-green-blue (RGB) reflectance with optical coherence tomography (OCT) and autofluorescence imaging (AFI) has been developed. The system uses a submillimeter diameter rotary-pullback double-clad fiber imaging catheter for sample illumination and detection. The imaging capabilities of each modality are presented and demonstrated with images of a multicolored card, fingerprints, and tongue mucosa. Broadband imaging, which was done to compare with narrowband sources, revealed better contrast but worse color consistency compared with narrowband RGB reflectance. The measured resolution of the endoscopic system is 25 µm in both the rotary direction and the pullback direction. OCT can be performed simultaneously with either narrowband RGB reflectance imaging or AFI.


Assuntos
Endoscópios , Tecnologia de Fibra Óptica/instrumentação , Imagem Óptica/métodos , Tomografia de Coerência Óptica/métodos , Animais , Catéteres , Endoscopia , Células Epiteliais/citologia , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA