Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526683

RESUMO

Knowledge of the temperature dependence of the isobaric specific heat (Cp) upon deep supercooling can give insights regarding the anomalous properties of water. If a maximum in Cp exists at a specific temperature, as in the isothermal compressibility, it would further validate the liquid-liquid critical point model that can explain the anomalous increase in thermodynamic response functions. The challenge is that the relevant temperature range falls in the region where ice crystallization becomes rapid, which has previously excluded experiments. Here, we have utilized a methodology of ultrafast calorimetry by determining the temperature jump from femtosecond X-ray pulses after heating with an infrared laser pulse and with a sufficiently long time delay between the pulses to allow measurements at constant pressure. Evaporative cooling of ∼15-µm diameter droplets in vacuum enabled us to reach a temperature down to ∼228 K with a small fraction of the droplets remaining unfrozen. We observed a sharp increase in Cp, from 88 J/mol/K at 244 K to about 218 J/mol/K at 229 K where a maximum is seen. The Cp maximum is at a similar temperature as the maxima of the isothermal compressibility and correlation length. From the Cp measurement, we estimated the excess entropy and self-diffusion coefficient of water and these properties decrease rapidly below 235 K.

2.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753488

RESUMO

Chloride ion-pumping rhodopsin (ClR) in some marine bacteria utilizes light energy to actively transport Cl- into cells. How the ClR initiates the transport is elusive. Here, we show the dynamics of ion transport observed with time-resolved serial femtosecond (fs) crystallography using the Linac Coherent Light Source. X-ray pulses captured structural changes in ClR upon flash illumination with a 550 nm fs-pumping laser. High-resolution structures for five time points (dark to 100 ps after flashing) reveal complex and coordinated dynamics comprising retinal isomerization, water molecule rearrangement, and conformational changes of various residues. Combining data from time-resolved spectroscopy experiments and molecular dynamics simulations, this study reveals that the chloride ion close to the Schiff base undergoes a dissociation-diffusion process upon light-triggered retinal isomerization.


Assuntos
Canais de Cloreto/metabolismo , Cloretos/metabolismo , Rodopsinas Microbianas/metabolismo , Cátions Monovalentes/metabolismo , Canais de Cloreto/isolamento & purificação , Canais de Cloreto/efeitos da radiação , Canais de Cloreto/ultraestrutura , Cristalografia/métodos , Radiação Eletromagnética , Lasers , Simulação de Dinâmica Molecular , Nocardioides , Conformação Proteica em alfa-Hélice/efeitos da radiação , Estrutura Terciária de Proteína/efeitos da radiação , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/efeitos da radiação , Proteínas Recombinantes/ultraestrutura , Retinaldeído/metabolismo , Retinaldeído/efeitos da radiação , Rodopsinas Microbianas/isolamento & purificação , Rodopsinas Microbianas/efeitos da radiação , Rodopsinas Microbianas/ultraestrutura , Água/metabolismo
3.
Anal Chem ; 94(37): 12645-12656, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36054318

RESUMO

Serial femtosecond crystallography (SFX) has become one of the standard techniques at X-ray free-electron lasers (XFELs) to obtain high-resolution structural information from microcrystals of proteins. Nevertheless, reliable sample delivery is still often limiting data collection, as microcrystals can clog both field- and flow-focusing nozzles despite in-line filters. In this study, we developed acoustic 2D focusing of protein microcrystals in capillaries that enables real-time online characterization of crystal size and shape in the sample delivery line after the in-line filter. We used a piezoelectric actuator to create a standing wave perpendicular to the crystal flow, which focused lysozyme microcrystals into a single line inside a silica capillary so that they can be imaged using a high-speed camera. We characterized the acoustic contrast factor, focus size, and the coaxial flow lines and developed a splitting union that enables up-concentration to at least a factor of five. The focus size, flow rates, and geometry may enable an upper limit of up-concentration as high as 200 fold. The novel feedback and concentration control could be implemented for serial crystallography at synchrotrons with minor modifications. It will also aid the development of improved sample delivery systems that will increase SFX data collection rates at XFELs, with potential applications to many proteins that can only be purified and crystallized in small amounts.


Assuntos
Muramidase , Síncrotrons , Acústica , Cristalografia , Cristalografia por Raios X , Proteínas/química , Dióxido de Silício
4.
Chemphyschem ; 23(19): e202200192, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35959919

RESUMO

Reversibly photoswitchable fluorescent proteins are essential markers for advanced biological imaging, and optimization of their photophysical properties underlies improved performance and novel applications. Here we establish a link between photoswitching contrast, one of the key parameters that dictate the achievable resolution in nanoscopy applications, and chromophore conformation in the non-fluorescent state of rsEGFP2, a widely employed label in REversible Saturable OpticaL Fluorescence Transitions (RESOLFT) microscopy. Upon illumination, the cis chromophore of rsEGFP2 isomerizes to two distinct off-state conformations, trans1 and trans2, located on either side of the V151 side chain. Reducing or enlarging the side chain at this position (V151A and V151L variants) leads to single off-state conformations that exhibit higher and lower switching contrast, respectively, compared to the rsEGFP2 parent. The combination of structural information obtained by serial femtosecond crystallography with high-level quantum chemical calculations and with spectroscopic and photophysical data determined in vitro suggests that the changes in switching contrast arise from blue- and red-shifts of the absorption bands associated to trans1 and trans2, respectively. Thus, due to elimination of trans2, the V151A variants of rsEGFP2 and its superfolding variant rsFolder2 display a more than two-fold higher switching contrast than their respective parent proteins, both in vitro and in E. coli cells. The application of the rsFolder2-V151A variant is demonstrated in RESOLFT nanoscopy. Our study rationalizes the connection between structural and photophysical chromophore properties and suggests a means to rationally improve fluorescent proteins for nanoscopy applications.


Assuntos
Escherichia coli , Microscopia , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde , Proteínas Luminescentes/química
5.
Nature ; 540(7633): 453-457, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27871088

RESUMO

Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4), in which S1 is the dark-stable state and S3 is the last semi-stable state before O-O bond formation and O2 evolution. A detailed understanding of the O-O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O-O bond formation mechanisms.


Assuntos
Cianobactérias/química , Elétrons , Lasers , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Temperatura , Amônia/química , Amônia/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalização , Manganês/metabolismo , Modelos Moleculares , Oxigênio/metabolismo , Especificidade por Substrato , Água/metabolismo
6.
Nat Methods ; 20(2): 170-173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36639584
7.
Phys Rev Lett ; 127(5): 058001, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34397240

RESUMO

We report observations of nanosecond nonuniform colloidal dynamics in a free flowing liquid jet using ultrafast x-ray speckle visibility spectroscopy. Utilizing a nanosecond double-bunch mode, the Linac Coherent Light Source free electron laser produced pairs of femtosecond coherent hard x-ray pulses. By exploring anisotropy in the visibility of summed speckle patterns which relates to the correlation functions, we evaluate not only the average particle flow rate in a colloidal nanoparticle jet, but also the nonuniform flow field within. The methodology presented here establishes the foundation for the study of nano- and atomic-scale inhomogeneous fluctuations in complex matter using x-ray free electron laser sources.

8.
J Chem Phys ; 155(21): 214501, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879659

RESUMO

The structural changes of water upon deep supercooling were studied through wide-angle x-ray scattering at SwissFEL. The experimental setup had a momentum transfer range of 4.5 Å-1, which covered the principal doublet of the x-ray structure factor of water. The oxygen-oxygen structure factor was obtained for temperatures down to 228.5 ± 0.6 K. Similar to previous studies, the second diffraction peak increased strongly in amplitude as the structural change accelerated toward a local tetrahedral structure upon deep supercooling. We also observed an anomalous trend for the second peak position of the oxygen-oxygen structure factor (q2). We found that q2 exhibits an unprecedented positive partial derivative with respect to temperature for temperatures below 236 K. Based on Fourier inversion of our experimental data combined with reference data, we propose that the anomalous q2 shift originates from that a repeat spacing in the tetrahedral network, associated with all peaks in the oxygen-oxygen pair-correlation function, gives rise to a less dense local ordering that resembles that of low-density amorphous ice. The findings are consistent with that liquid water consists of a pentamer-based hydrogen-bonded network with low density upon deep supercooling.

9.
Opt Express ; 28(5): 5898-5918, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225851

RESUMO

Ghost imaging, Fourier transform spectroscopy, and the newly developed Hadamard transform crystallography are all examples of multiplexing measurement strategies. Multiplexed experiments are performed by measuring multiple points in space, time, or energy simultaneously. This contrasts to the usual method of systematically scanning single points. How do multiplexed measurements work and when they are advantageous? Here we address these questions with a focus on applications involving x-rays or electrons. We present a quantitative framework for analyzing the expected error and radiation dose of different measurement scheme that enables comparison. We conclude that in very specific situations, multiplexing can offer improvements in resolution and signal-to-noise. If the signal has a sparse representation, these advantages become more general and dramatic, and further less radiation can be used to complete a measurement.

10.
Phys Chem Chem Phys ; 22(5): 2704-2712, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31793561

RESUMO

The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime. In this paper we propose and demonstrate a new technique to conduct transient absorption spectroscopy with broad bandwidth attosecond pulses with the aid of ghost imaging, recovering sub-bandwidth resolution in photoproduct-based absorption measurements.

11.
J Synchrotron Radiat ; 26(Pt 2): 346-357, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855242

RESUMO

The Macromolecular Femtosecond Crystallography (MFX) instrument at the Linac Coherent Light Source (LCLS) is the seventh and newest instrument at the world's first hard X-ray free-electron laser. It was designed with a primary focus on structural biology, employing the ultrafast pulses of X-rays from LCLS at atmospheric conditions to overcome radiation damage limitations in biological measurements. It is also capable of performing various time-resolved measurements. The MFX design consists of a versatile base system capable of supporting multiple methods, techniques and experimental endstations. The primary techniques supported are forward scattering and crystallography, with capabilities for various spectroscopic methods and time-resolved measurements. The location of the MFX instrument allows for utilization of multiplexing methods, increasing user access to LCLS by running multiple experiments simultaneously.

12.
Angew Chem Int Ed Engl ; 58(19): 6371-6375, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30866169

RESUMO

Time-resolved pump-probe gas-phase X-ray scattering signals, extrapolated to zero momentum transfer, provide a measure of the number of electrons in a system, an effect that arises from the coherent addition of elastic scattering from the electrons. This allows to identify reactive transients and determine the chemical reaction kinetics without the need for extensive scattering simulations or complicated inversion of scattering data. We examine the photodissociation reaction of trimethylamine and identify two reaction paths upon excitation to the 3p state at 200 nm: a fast dissociation path out of the 3p state to the dimethyl amine radical (16.6±1.2 %) and a slower dissociation via internal conversion to the 3s state (83.4±1.2 %). The time constants for the two reactions are 640±130 fs and 74±6 ps, respectively. Additionally, it is found that the transient dimethyl amine radical has a N-C bond length of 1.45±0.02 Šand a C-N-C bond angle of 118°±4°.

13.
Biophys J ; 112(9): 1841-1851, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28494955

RESUMO

Surface layers (S-layers) are paracrystalline, proteinaceous structures found in most archaea and many bacteria. Often the outermost cell envelope component, S-layers serve diverse functions including aiding pathogenicity and protecting against predators. We report that the S-layer of Caulobacter crescentus exhibits calcium-mediated structural plasticity, switching irreversibly between an amorphous aggregate state and the crystalline state. This finding invalidates the common assumption that S-layers serve only as static wall-like structures. In vitro, the Caulobacter S-layer protein, RsaA, enters the aggregate state at physiological temperatures and low divalent calcium ion concentrations. At higher concentrations, calcium ions stabilize monomeric RsaA, which can then transition to the two-dimensional crystalline state. Caulobacter requires micromolar concentrations of calcium for normal growth and development. Without an S-layer, Caulobacter is even more sensitive to changes in environmental calcium concentration. Therefore, this structurally dynamic S-layer responds to environmental conditions as an ion sensor and protects Caulobacter from calcium deficiency stress, a unique mechanism of bacterial adaptation. These findings provide a biochemical and physiological basis for RsaA's calcium-binding behavior, which extends far beyond calcium's commonly accepted role in aiding S-layer biogenesis or oligomerization and demonstrates a connection to cellular fitness.


Assuntos
Cálcio/metabolismo , Caulobacter crescentus/química , Caulobacter crescentus/metabolismo , Glicoproteínas de Membrana/química , Cálcio/química , Caulobacter crescentus/ultraestrutura , Dicroísmo Circular , Cristalização , Glicoproteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Agregados Proteicos , Dobramento de Proteína , Espalhamento a Baixo Ângulo , Estresse Fisiológico , Temperatura , Difração de Raios X
14.
Faraday Discuss ; 194: 525-536, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27711844

RESUMO

We present a multifaceted investigation into the initial photodissociation dynamics of 1,4-diiodobenzene (DIB) following absorption of 267 nm radiation. We combine ultrafast time-resolved photoelectron spectroscopy and X-ray scattering experiments performed at the Linac Coherent Light Source (LCLS) to study the initial electronic excitation and subsequent rotational alignment, and interpret the experiments in light of Complete Active Space Self-Consistent Field (CASSCF) calculations of the excited electronic landscape. The initially excited state is found to be a bound 1B1 surface, which undergoes ultrafast population transfer to a nearby state in 35 ± 10 fs. The internal conversion most likely leads to one or more singlet repulsive surfaces that initiate the dissociation. This initial study is an essential and prerequisite component of a comprehensive study of the complete photodissociation pathway(s) of DIB at 267 nm. Assignment of the initially excited electronic state as a bound state identifies the mechanism as predissociative, and measurement of its lifetime establishes the time between excitation and initiation of dissociation, which is crucial for direct comparison of photoelectron and scattering experiments.

15.
Biophys J ; 109(8): 1528-32, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26488642

RESUMO

As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python.


Assuntos
Simulação de Dinâmica Molecular , Software , Internet
16.
J Chem Phys ; 139(14): 145104, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24116650

RESUMO

Many protein systems fold in a two-state manner. Random models, however, rarely display two-state kinetics and thus such behavior should not be accepted as a default. While theories for the prevalence of two-state kinetics have been presented, none sufficiently explain the breadth of experimental observations. A model, making minimal assumptions, is introduced that suggests two-state behavior is likely for any system with an overwhelmingly populated native state. We show two-state folding is a natural consequence of such two-state thermodynamics, and is strengthened by increasing the population of the native state. Further, the model exhibits hub-like behavior, with slow interconversions between unfolded states. Despite this, the unfolded state equilibrates quickly relative to the folding time. This apparent paradox is readily understood through this model. Finally, our results compare favorable with measurements of folding rates as a function of chain length and Keq, providing new insight into these relations.


Assuntos
Proteínas/química , Cinética , Dobramento de Proteína , Termodinâmica
17.
Methods Enzymol ; 688: 169-194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37748826

RESUMO

Diffuse scattering has long been proposed to probe protein dynamics relevant for biological function, and more recently, as a tool to aid structure determination. Despite recent advances in measuring and modeling this signal, the field has not been able to routinely use experimental diffuse scattering for either application. A persistent challenge has been to devise models that are sophisticated enough to robustly reproduce experimental diffuse features but remain readily interpretable from the standpoint of structural biology. This chapter presents eryx, a suite of computational tools to evaluate the primary models of disorder that have been used to analyze protein diffuse scattering. By facilitating comparative modeling, eryx aims to provide insights into the physical origins of this signal and help identify the sources of disorder that are critical for reproducing experimental features. This framework also lays the groundwork for the development of more advanced models that integrate different types of disorder without loss of interpretability.

18.
Curr Opin Struct Biol ; 80: 102601, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37182397

RESUMO

The past century has witnessed an exponential increase in our atomic-level understanding of molecular and cellular mechanisms from a structural perspective, with multiple landmark achievements contributing to the field. This, coupled with recent and continuing breakthroughs in artificial intelligence methods such as AlphaFold2, and enhanced computational power, is enabling our understanding of protein structure and function at unprecedented levels of accuracy and predictivity. Here, we describe some of the major recent advances across these fields, and describe, as these technologies coalesce, the potential to utilise our enhanced knowledge of intricate cellular and molecular systems to discover novel therapeutics to alleviate human suffering.


Assuntos
Inteligência Artificial , Biologia , Humanos
19.
Nat Commun ; 14(1): 3313, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316494

RESUMO

The phase transition between water and ice is ubiquitous and one of the most important phenomena in nature. Here, we performed time-resolved x-ray scattering experiments capturing the melting and recrystallization dynamics of ice. The ultrafast heating of ice I is induced by an IR laser pulse and probed with an intense x-ray pulse which provided us with direct structural information on different length scales. From the wide-angle x-ray scattering (WAXS) patterns, the molten fraction, as well as the corresponding temperature at each delay, were determined. The small-angle x-ray scattering (SAXS) patterns, together with the information extracted from the WAXS analysis, provided the time-dependent change of the size and the number of liquid domains. The results show partial melting (~13%) and superheating of ice occurring at around 20 ns. After 100 ns, the average size of the liquid domains grows from about 2.5 nm to 4.5 nm by the coalescence of approximately six adjacent domains. Subsequently, we capture the recrystallization of the liquid domains, which occurs on microsecond timescales due to the cooling by heat dissipation and results to a decrease of the average liquid domain size.

20.
Nat Commun ; 14(1): 442, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707522

RESUMO

Recent experiments continue to find evidence for a liquid-liquid phase transition (LLPT) in supercooled water, which would unify our understanding of the anomalous properties of liquid water and amorphous ice. These experiments are challenging because the proposed LLPT occurs under extreme metastable conditions where the liquid freezes to a crystal on a very short time scale. Here, we analyze models for the LLPT to show that coexistence of distinct high-density and low-density liquid phases may be observed by subjecting low-density amorphous (LDA) ice to ultrafast heating. We then describe experiments in which we heat LDA ice to near the predicted critical point of the LLPT by an ultrafast infrared laser pulse, following which we measure the structure factor using femtosecond x-ray laser pulses. Consistent with our predictions, we observe a LLPT occurring on a time scale < 100 ns and widely separated from ice formation, which begins at times >1 µs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA