RESUMO
This study was designed to determine the extent to which changes in the evaporative power of the environment (Emax) affect sweating and evaporative rates. Six male subjects undertook four 60-min bouts of cycle ergometer exercise at 56% maximal O2 uptake (VO2max).Emax was varied by differences in ambient temperature and airflow; two exercise bouts took place at 24 degrees C and two at 35 degrees C, with air velocity at < 0.2 and 3.0 m/s in both. Total sweat production was estimated from body weight loss, whereas whole body evaporative rate was measured continuously from a Potter beam balance. Body core temperature was measured continuously from a thermocouple in the esophagus (T(es)), with mean skin temperature (Tsk) computed each minute from thermocouples at eight sites. Total body sweat loss was significantly greater (P < 0.05) in the 0.2- than in the 3.0-m/s condition at both 24 and 35 degrees C. Tsk was higher (P < 0.05) in the still-air conditions at both temperatures, but final T(es) was significantly higher (P < 0.05) in still air only in the 35 degrees C environment. Thus the reduced Emax in still air caused a greater heat storage, thereby stimulating a greater total sweat loss. However, in part because of reduced skin wettedness, the slope of the sweat rate-to-T(es) relation at 35 degrees C in the 3.0-m/s condition was 118% that at 0.2 m/s (P < 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)
Assuntos
Movimentos do Ar , Regulação da Temperatura Corporal/fisiologia , Exercício Físico/fisiologia , Sudorese/fisiologia , Adulto , Dióxido de Carbono/metabolismo , Frequência Cardíaca/fisiologia , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Temperatura Cutânea/fisiologia , TemperaturaRESUMO
We examined osmotic control of thirst and free water clearance in healthy older (65+, n = 10) and younger (Y, n = 6) subjects during a 3-h rehydration period after an approximately 2.4% decrease in body weight. Plasma volume (PV), plasma osmolality (Posm), renal function, and thirst were measured before and after dehydration and during rehydration. In 65+, baseline PV was lower (43.1 +/- 1.6 vs. 48.1 +/- 2.5 ml/kg), Posm was higher (287 +/- 1 vs. 281 +/- 2 mosmol/kgH2O), and perceived thirst was lower than in Y. During dehydration, the osmotic threshold for increased thirst was shifted to a higher Posm in 65+. Total fluid intake was greater in Y than in 65+ (16.6 +/- 4.1 vs. 8.9 +/- 2.0 ml/kg); however, the relation between thirst and the rate of fluid intake was identical. Thus the blunted rehydration in 65+ is related to a lower overall sensation of thirst. The stimulus-response characteristics of osmotic control of free water clearance was similar in 65+ and Y; however, 65+ operated around a higher Posm and on a less-steep portion of the stimulus-response curve. These data support the hypothesis that the hyperosmotic hypovolemic state of healthy older individuals is not a result of a simple water deficit but represents a shift in the operating point for control of body fluid volume and composition.