Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2315597121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687786

RESUMO

Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The venom of African spitting cobras often causes permanent injury via tissue-destructive dermonecrosis at the bite site, which is ineffectively treated by current antivenoms. To address this therapeutic gap, we identified the etiological venom toxins in Naja nigricollis venom responsible for causing local dermonecrosis. While cytotoxic three-finger toxins were primarily responsible for causing spitting cobra cytotoxicity in cultured keratinocytes, their potentiation by phospholipases A2 toxins was essential to cause dermonecrosis in vivo. This evidence of probable toxin synergism suggests that a single toxin-family inhibiting drug could prevent local envenoming. We show that local injection with the repurposed phospholipase A2-inhibiting drug varespladib significantly prevents local tissue damage caused by several spitting cobra venoms in murine models of envenoming. Our findings therefore provide a therapeutic strategy that may effectively prevent life-changing morbidity caused by snakebite in rural Africa.


Assuntos
Acetatos , Venenos Elapídicos , Indóis , Cetoácidos , Necrose , Mordeduras de Serpentes , Animais , Mordeduras de Serpentes/tratamento farmacológico , Camundongos , Humanos , Acrilamidas/farmacologia , Fosfolipases A2/metabolismo , Naja , Elapidae , Queratinócitos/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/patologia , Reposicionamento de Medicamentos
2.
Sci Rep ; 14(1): 23014, 2024 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-39362932

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH) is a common but frequently unrecognized complication of obesity and type 2 diabetes. The association between these conditions is multifaceted and involves complex interactions between metabolic, inflammatory, and genetic factors. Here we assess the underlying structural and molecular processes focusing on the immunological phase of MASH in the nonobese inflammation and fibrosis (NIF) mouse model and compare it to the human disease as well as other murine models. Histopathology together with synchrotron-radiation-based x-ray micro-computed tomography (SRµCT) was used to investigate structural changes within the hepatic sinusoids network in the NIF mouse in comparison to patients with different severities of MASH. A time-course, bulk RNA-sequencing analysis of liver tissue from NIF mice was performed to identify the dynamics of key processes associated with the pathogenesis. Transcriptomics profiling of the NIF mouse revealed a gradual transition from an initially reactive inflammatory response to a regenerative, pro-fibrotic inflammatory response suggesting new avenues for treatment strategies that focus on immunological targets. Despite the lack of metabolic stress induced liver phenotype, a large similarity between the NIF mouse and the immunological phase of human MASH was detected. The translational value was further supported by the comparative analyses with MASH patients and additional animal models. Finally, the impact of diets known to induce metabolic stress, was explored in the NIF mouse. An obesogenic diet was found to induce key physiological, metabolic, and histologic changes akin to those observed in human MASH.


Assuntos
Modelos Animais de Doenças , Animais , Humanos , Camundongos , Masculino , Fígado/metabolismo , Fígado/patologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Microtomografia por Raio-X , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Inflamação/patologia , Obesidade/metabolismo , Obesidade/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia
3.
Sci Rep ; 13(1): 21662, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066189

RESUMO

Snakebite envenoming is a global public health issue that causes significant morbidity and mortality, particularly in low-income regions of the world. The clinical manifestations of envenomings vary depending on the snake's venom, with paralysis, haemorrhage, and necrosis being the most common and medically relevant effects. To assess the efficacy of antivenoms against dermonecrosis, a preclinical testing approach involves in vivo mouse models that mimic local tissue effects of cytotoxic snakebites in humans. However, current methods for assessing necrosis severity are time-consuming and susceptible to human error. To address this, we present the Venom Induced Dermonecrosis Analysis tooL (VIDAL), a machine-learning-guided image-based solution that can automatically identify dermonecrotic lesions in mice, adjust for lighting biases, scale the image, extract lesion area and discolouration, and calculate the severity of dermonecrosis. We also introduce a new unit, the dermonecrotic unit (DnU), to better capture the complexity of dermonecrosis severity. Our tool is comparable to the performance of state-of-the-art histopathological analysis, making it an accessible, accurate, and reproducible method for assessing dermonecrosis in mice. Given the urgent need to address the neglected tropical disease that is snakebite, high-throughput technologies such as VIDAL are crucial in developing and validating new and existing therapeutics for this debilitating disease.


Assuntos
Mordeduras de Serpentes , Peçonhas , Humanos , Camundongos , Animais , Mordeduras de Serpentes/terapia , Antivenenos/farmacologia , Saúde Global , Necrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA