RESUMO
BACKGROUND: Tracking the migration pathways of living cells after their introduction into a patient's body is a topical issue in the field of cell therapy. Questions related to studying the possibility of long-term intravital biodistribution of mesenchymal stromal cells in the body currently remain open. METHODS: Forty-nine laboratory animals were used in the study. Modeling of local radiation injuries was carried out, and the dynamics of the distribution of mesenchymal stromal cells labeled with [89Zr]Zr-oxine in the rat body were studied. RESULTS: the obtained results of the labelled cell distribution allow us to assume that this procedure could be useful for visualization of local radiation injury using positron emission tomography. However, further research is needed to confirm this assumption. CONCLUSIONS: intravenous injection leads to the initial accumulation of cells in the lungs and their subsequent redistribution to the liver, spleen, and kidneys. When locally injected into tissues, mesenchymal stromal cells are not distributed systemically in significant quantities.
Assuntos
Células-Tronco Mesenquimais , Radioisótopos , Humanos , Ratos , Animais , Distribuição Tecidual , Oxiquinolina , Tomografia por Emissão de Pósitrons , Animais de Laboratório , Zircônio , Linhagem Celular TumoralRESUMO
Today, 44Sc is an attractive radionuclide for molecular imaging with PET. In this work, we evaluated a 44Ti/44Sc radionuclide generator based on TEVA resin as a source of 44Sc. The generator prototype (5 MBq) exhibits high 44Ti retention and stable yield of 44Sc (91 ± 6 %) in 1 mL of eluate (20 bed volumes, eluent-0.1 M oxalic acid/0.2 M HCl) during one year of monitoring (more than 120 elutions). The breakthrough of 44Ti did not exceed 1.5 × 10-5% (average value was 6.5 × 10-6%). Post-processing of the eluate for further use in radiopharmaceutical synthesis was proposed. The post-processing procedure using a combination of Presep® PolyChelate and TK221 resins made it possible to obtain 44Sc-radioconjugates with high labeling yield (≥95%) while using small precursor amounts (5 nmol). The proposed method takes no more than 15 min and provides ≥90% yield relative to the 44Sc activity eluted from the generator. The labeling efficiency was demonstrated on the example of [44Sc]Sc-PSMA-617 and [44Sc]Sc-PSMA-I&T synthesis. Some superiority of PSMA-I&T over PSMA-617 in terms of 44Sc labeling efficiency was demonstrated (likely due to presence of DOTAGA chelator in the precursor structure). It was also shown that microwave heating of the reaction mixture considerably shortened the reaction time and improved radiolabeling yield and reproducibility of [44Sc]Sc-PSMA-617 and [44Sc]Sc-PSMA-I&T synthesis.
Assuntos
Dipeptídeos/química , Compostos Heterocíclicos com 1 Anel/química , Antígeno Prostático Específico/química , Compostos Radiofarmacêuticos/química , Escândio/isolamento & purificação , Titânio/isolamento & purificação , Quelantes/química , Fracionamento Químico , Técnicas de Química Sintética , Cromatografia , Marcação por Isótopo/métodos , Cinética , Radioisótopos/química , Compostos Radiofarmacêuticos/síntese química , Resinas Sintéticas/química , Escândio/química , Titânio/químicaRESUMO
In this article, we present the synthesis and characterization of new acyclic pyridine-containing polyaminocarboxylate ligands H4aPyta and H6aPyha, which differ in structural rigidity and the number of chelating groups. Their abilities to form complexes with Cu2+, Ga3+, Y3+, and Bi3+ cations, as well as the stability of the complexes, were evaluated by potentiometric titration method, radiolabeling with the corresponding radionuclides, in vitro studies, mass spectrometry, and HPLC. The structures of the resulting complexes were determined using NMR spectroscopy and DFT calculations. The results obtained made it possible to evaluate the influence of the structural features of the complexes on their stability. The developed chelators H4aPyta and H6aPyha were proved to be promising for further research in the field of radiopharmaceuticals.