Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271925

RESUMO

In 2020 the world faced the pandemic of COVID-19 severe acute respiratory syndrome caused by a new type of coronavirus named SARS-CoV-2. To stop the spread of the disease, it is crucial to create molecular tools allowing the investigation, diagnoses and treatment of COVID-19. One of such tools are monoclonal antibodies (mAbs). In this study we describe the development of hybridoma cells that can produce mouse mAbs against receptor binding domain of SARS-CoV-2 spike (S) protein. These mAbs are able to specifically detect native and denatured S proteins in all tested applications, including immunoblotting, enzyme-linked immunosorbent assay, immunofluorescence staining of cells and immunohistochemical staining of paraffin embedded patients' tissue samples. In addition, we showed that the obtained mAbs can efficiently block SARS-CoV-2 infection in in vitro experiments. Finally, we determined the amino acid sequence of light and heavy chains of the mAbs. This information will allow the use of corresponding peptides to establish genetically engineered therapeutic antibodies. To date multiple mAbs against SARS-CoV-2 proteins have been established, however, bigger sets of various antibodies will allow the detection and neutralization of SARS-CoV-2, even if the virus acquires novel mutations.


Assuntos
Anticorpos Monoclonais/metabolismo , Antígenos Virais/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Reações Antígeno-Anticorpo , Antígenos Virais/imunologia , COVID-19/patologia , COVID-19/virologia , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Hibridomas/citologia , Hibridomas/metabolismo , Imuno-Histoquímica , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Domínios Proteicos/imunologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Materials (Basel) ; 17(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276470

RESUMO

One of the most promising applications of FeNiCoCrMoAl-based high-entropy alloy is the fabrication of protective coatings. In this work, gas-atomized powder of FeNiCoCrMo0.5Al1.3 composition was deposited via high-velocity oxygen fuel spraying. It was shown that in-flight oxidation of the powder influences the coating's phase composition and properties. Powder oxidation and phase transformations were studied under HVOF deposition, and during continuous heating and prolonged isothermal annealing at 800 °C. Optical and scanning electron microscopy observation, energy dispersive X-ray analysis, X-ray diffraction analysis, thermogravimetric analysis, differential thermal analysis, and microhardness tests were used for study. In a gas-atomized state, the powder consisted of BCC supersaturated solid solution. The high rate of heating and cooling and high oxygen concentration during spraying led to oxidation development prior to decomposition of the supersaturated solid solution. Depleted Al layers of BCC transferred to the FCC phase. An increase in the spraying distance resulted in an increase in α-Al2O3 content; however, higher oxide content does not result in a higher microhardness. In contrast, under annealing, the supersaturated BCC solid solution decomposition occurs earlier than pronounced oxidation, which leads to considerable strengthening to 910 HV.

3.
Biochimie ; 219: 74-83, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37619809

RESUMO

Glioblastoma (GBM) is the most aggressive and frequent type of primary brain cancer in adult patients. One of the key molecular features associated with GBM pathogenesis is the dysfunction of PTEN oncosuppressor. In addition to PTEN gene, humans and several primates possess processed PTEN pseudogene (PTENP1) that gives rise to long non-coding RNA lncPTENP1-S. Regulation and functions of PTEN and PTENP1 are highly interconnected, however, the exact molecular mechanism of how these two genes affect each other remains unclear. Here, we analyzed the methylation level of the CpG islands (CpGIs) in the promoter regions of PTEN and PTENP1 in patient-derived GBM neurospheres. We found that increased PTEN methylation corelates with decreased PTEN mRNA level. Unexpectedly, we showed the opposite trend for PTENP1. Using targeted methylation and demethylation of PTENP1 CpGI, we demonstrated that DNA methylation increases lncPTENP1-S expression in the presence of wild type PTEN protein but decreases lncPTENP1-S expression if PTEN protein is absent. Further experiments revealed that PTEN protein binds to PTENP1 promoter region and inhibits lncPTENP1-S expression if its CpGI is demethylated. Interestingly, we did not detect any effect of lncPTENP1-S on the level of PTEN mRNA, indicating that in GBM cells PTENP1 is a downstream target of PTEN rather than its upstream regulator. Finally, we studied the functions of lncPTENP1-S and demonstrated that it plays a pro-oncogenic role in GBM cells by upregulating the expression of cancer stem cell markers and decreasing cell adhesion.


Assuntos
Glioblastoma , MicroRNAs , Adulto , Animais , Humanos , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Pseudogenes , Metilação de DNA , Glioblastoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Biochimie ; 200: 131-139, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35654242

RESUMO

Glioblastoma (GBM) is the most frequent and aggressive primary brain cancer in adult patients. A variety of long non-coding RNAs play an important role in the pathogenesis of GBM, however the molecular functions of most of them still remain elusive. Here, we investigated linc-RoR (long intergenic non-protein coding RNA, regulator of reprogramming) using GBM neurospheres obtained from 12 different patients. We demonstrated that the highest level of this transcript is detected in cells with increased EGFR expression. According to our data, linc-RoR knockdown decreases cell proliferation, increases sensitivity to DNA damage, and downregulates the level of cancer stem cell (CSC) markers. On the other hand, linc-RoR overexpression promote cell growth and increases the proportion of CSCs. Analysis of RNA sequencing data revealed that linc-RoR affects expression of genes involved in the regulation of mitosis. In agreement with this observation, we have showen that the highest level of linc-RoR is detected in the G2/M phase of the cell cycle, when linc-RoR is localized on the chromosomes of dividing cells. Based on our results, we can propose that linc-RoR performs pro-oncogenic functions in human gliobalstoma cells, which may be associated with the regulation of mitotic progression and GBM stemness.


Assuntos
Glioblastoma , RNA Longo não Codificante , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células/genética , Glioblastoma/genética , Humanos , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Nat Cell Biol ; 24(10): 1541-1557, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36192632

RESUMO

Glioblastoma (GBM) is characterized by exceptionally high intratumoral heterogeneity. However, the molecular mechanisms underlying the origin of different GBM cell populations remain unclear. Here, we found that the compositions of ribosomes of GBM cells in the tumour core and edge differ due to alternative RNA splicing. The acidic pH in the core switches before messenger RNA splicing of the ribosomal gene RPL22L1 towards the RPL22L1b isoform. This allows cells to survive acidosis, increases stemness and correlates with worse patient outcome. Mechanistically, RPL22L1b promotes RNA splicing by interacting with lncMALAT1 in the nucleus and inducing its degradation. Contrarily, in the tumour edge region, RPL22L1a interacts with ribosomes in the cytoplasm and upregulates the translation of multiple messenger RNAs including TP53. We found that the RPL22L1 isoform switch is regulated by SRSF4 and identified a compound that inhibits this process and decreases tumour growth. These findings demonstrate how distinct GBM cell populations arise during tumour growth. Targeting this mechanism may decrease GBM heterogeneity and facilitate therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Processamento Alternativo , Regulação Neoplásica da Expressão Gênica , Ribossomos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , Splicing de RNA/genética , Fenótipo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral
6.
Materials (Basel) ; 14(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34947464

RESUMO

In the present study, powder of FeCoCrNiMo0.5Al1.3 HEA was manufactured by gas atomization process, and then used for laser powder bed fusion (L-PBF) and microplasma spraying (MPS) technologies. The processes of phase composition and microstructure transformation during above mentioned processes and subsequent heat treatment were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and differential thermal analysis (DTA) methods. It was found that gas atomization leads to a formation of dendrites of body centered cubic (BCC) supersaturated solid solution with insignificant Mo-rich segregations on the peripheries of the dendrites. Annealing leads to an increase of element segregations till to decomposition of the BCC solid solution and formation of σ-phase and B2 phase. Microstructure and phase composition of L-PBF sample are very similar to those of the powder. The MPS coating has a little fraction of face centered cubic (FCC) phase because of Al oxidation during spraying and formation of regions depleted in Al, in which FCC structure becomes more stable. Maximum hardness (950 HV) is achieved in the powder and L-PBF samples after annealing at 600 °C. Elastic modulus of the L-PBF sample, determined by nanoindentation, is 165 GPa, that is 12% lower than that of the cast alloy (186 GPa).

7.
PeerJ ; 7: e6691, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984480

RESUMO

BACKGROUND: Lysyl oxidases (LOX) have been extensively studied in mammals, whereas properties and functions of recently found homologues in prokaryotic genomes remain enigmatic. METHODS: LOX open reading frame was cloned from Haloterrigena turkmenica in an E. coli expression vector. Recombinant Haloterrigena turkmenica lysyl oxidase (HTU-LOX) proteins were purified using metal affinity chromatography under denaturing conditions followed by refolding. Amine oxidase activity has been measured fluorometrically as hydrogen peroxide release coupled with the oxidation of 10-acetyl-3,7-dihydroxyphenoxazine in the presence of horseradish peroxidase. Rabbit polyclonal antibodies were obtained and used in western blotting. RESULTS: Cultured H. turkmenica has no detectable amine oxidase activity. HTU-LOX may be expressed in E. coli with a high protein yield. The full-length protein gives no catalytic activity. For this reason, we hypothesized that the hydrophobic N-terminal region may interfere with proper folding and its removal may be beneficial. Indeed, truncated His-tagged HTU-LOX lacking the N-terminal hydrophobic signal peptide purified under denaturing conditions can be successfully refolded into an active enzyme, and a larger N-terminal truncation further increases the amine oxidase activity. Refolding is optimal in the presence of Cu2+ at pH 6.2 and is not sensitive to salt. HTU-LOX is sensitive to LOX inhibitor 3-aminopropionitrile. HTU-LOX deaminates usual substrates of mammalian LOX such as lysine-containing polypeptides and polymers. The major difference between HTU-LOX and mammalian LOX is a relaxed substrate specificity of the former. HTU-LOX readily oxidizes various primary amines including such compounds as taurine and glycine, benzylamine being a poor substrate. Of note, HTU-LOX is also active towards several aminoglycoside antibiotics and polymyxin. Western blotting indicates that epitopes for the anti-HTU-LOX polyclonal antibodies coincide with a high molecular weight protein in H. turkmenica cells. CONCLUSION: H. turkmenica contains a lysyl oxidase gene that was heterologously expressed yielding an active recombinant enzyme with important biochemical features conserved between all known LOXes, for example, the sensitivity to 3-aminopropionitrile. However, the native function in the host appears to be cryptic. SIGNIFICANCE: This is the first report on some properties of a lysyl oxidase from Archaea and an interesting example of evolution of enzymatic properties after hypothetical horizontal transfers between distant taxa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA