RESUMO
BACKGROUND: There are increasing numbers of metabolomic studies in food allergy (FA) and asthma, which, however, are predominantly limited by cross-sectional designs, small sample size, and being conducted in European populations. OBJECTIVE: We sought to identify metabolites unique to and shared by children with FA and/or asthma in a racially diverse prospective birth cohort, the Boston Birth Cohort. METHODS: Mass spectrometry-based untargeted metabolomic profiling was performed using venous plasma collected in early childhood (n = 811). FA was diagnosed according to clinical symptoms consistent with an acute hypersensitivity reaction at food ingestion and food specific-IgE > 0.35 kU/L. Asthma was defined on the basis of physician diagnosis. Generalized estimating equations were applied to analyze metabolomic associations with FA and asthma, adjusting for potential confounders. RESULTS: During a mean ± standard deviation follow-up of 11.8 ± 5.2 years from birth, 78 children developed FA and 171 developed asthma. Androgenic and pregnenolone steroids were significantly associated with a lower risk of FA, especially for egg allergy. N,N,N-trimethyl-5-aminovalerate (odds ratio [OR] = 0.65, 95% confidence interval [CI] = 0.48-0.87), and 1-oleoyl-2-arachidonoyl-sn-glycero-3-phosphoinositol (OR = 0.77; 95% CI = 0.66-0.90) were inversely associated with FA risk. Orotidine (OR = 4.73; 95% CI = 2.2-10.2) and 4-cholesten-3-one (OR = 0.52; 95% CI = 0.35-0.77) were the top 2 metabolites associated with risk of asthma, although they had no association with FA. In comparison, children with both FA and asthma exhibited an altered metabolomic profile that aligned with that of FA, including altered levels of lipids and steroids. CONCLUSION: In this US multiethnic prospective birth cohort, unique and shared alterations in plasma metabolites during early childhood were associated with risk of developing FA and/or asthma. These findings await further validation.
Assuntos
Asma , Hipersensibilidade Alimentar , Metabolômica , Humanos , Asma/sangue , Asma/epidemiologia , Hipersensibilidade Alimentar/sangue , Hipersensibilidade Alimentar/epidemiologia , Feminino , Masculino , Criança , Estudos Prospectivos , Pré-Escolar , Coorte de Nascimento , Metaboloma , Boston/epidemiologia , Lactente , AdolescenteRESUMO
BACKGROUNDWhile most children who contract COVID-19 experience mild disease, high-risk children with underlying conditions may develop severe disease, requiring interventions. Kinetics of antibodies transferred via COVID-19 convalescent plasma early in disease have not been characterized.METHODSIn this study, high-risk children were prospectively enrolled to receive high-titer COVID-19 convalescent plasma (>1:320 anti-spike IgG; Euroimmun). Passive transfer of antibodies and endogenous antibody production were serially evaluated for up to 2 months after transfusion. Commercial and research ELISA assays, virus neutralization assays, high-throughput phage-display assay utilizing a coronavirus epitope library, and pharmacokinetic analyses were performed.RESULTSFourteen high-risk children (median age, 7.5 years) received high-titer COVID-19 convalescent plasma, 9 children within 5 days (range, 2-7 days) of symptom onset and 5 children within 4 days (range, 3-5 days) after exposure to SARS-CoV-2. There were no serious adverse events related to transfusion. Antibodies against SARS-CoV-2 were transferred from the donor to the recipient, but antibody titers declined by 14-21 days, with a 15.1-day half-life for spike protein IgG. Donor plasma had significant neutralization capacity, which was transferred to the recipient. However, as early as 30 minutes after transfusion, recipient plasma neutralization titers were 6.2% (range, 5.9%-6.7%) of donor titers.CONCLUSIONConvalescent plasma transfused to high-risk children appears to be safe, with expected antibody kinetics, regardless of weight or age. However, current use of convalescent plasma in high-risk children achieves neutralizing capacity, which may protect against severe disease but is unlikely to provide lasting protection.Trial registrationClinicalTrials.gov NCT04377672.FundingThe state of Maryland, Bloomberg Philanthropies, and the NIH (grants R01-AI153349, R01-AI145435-A1, K08-AI139371-A1, and T32-AI052071).