Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(36): 11424-11437, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30107725

RESUMO

The Plasmodium proteasome is an emerging antimalarial target due to its essential role in all the major life cycle stages of the parasite and its contribution to the establishment of resistance to artemisinin (ART)-based therapies. However, because of a similarly essential role for the host proteasome, the key property of any antiproteasome therapeutic is selectivity. Several parasite-specific proteasome inhibitors have recently been reported, however, their selectivity must be improved to enable clinical development. Here we describe screening of diverse libraries of non-natural synthetic fluorogenic substrates to identify determinants at multiple positions on the substrate that produce enhanced selectivity. We find that selection of an optimal electrophilic "warhead" is essential to enable high selectivity that is driven by the peptide binding elements on the inhibitor. We also find that host cell toxicity is dictated by the extent of coinhibition of the human ß2 and ß5 subunits. Using this information, we identify compounds with over 3 orders of magnitude selectivity for the parasite enzyme. Optimization of the pharmacological properties resulted in molecules that retained high potency and selectivity, were soluble, sufficiently metabolically stable and orally bioavailable. These molecules are highly synergistic with ART and can clear parasites in a mouse model of infection, making them promising leads as antimalarial drugs.


Assuntos
Artemisininas/farmacologia , Plasmodium falciparum/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Artemisininas/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Inibidores de Proteassoma/química , Relação Estrutura-Atividade
2.
Artigo em Inglês | MEDLINE | ID: mdl-30249687

RESUMO

The in vivo antimalarial efficacies of two phosphatidylinositol 4-kinase (PI4K) inhibitors, a 3,5-diaryl-2-aminopyrazine sulfoxide and its corresponding sulfone metabolite, were evaluated in the NOD-scid IL2Rγnull (NSG) murine malaria disease model of Plasmodium falciparum infection. We hypothesized that the sulfoxide would serve as a more soluble prodrug for the sulfone, which would lead to improved drug exposure with oral dosing. Both compounds had similar efficacy (90% effective dose [ED90], 0.1 mg kg-1 of body weight) across a quadruple-dose regimen. Pharmacokinetic profiling revealed rapid sulfoxide clearance via conversion to sulfone, with sulfone identified as the major active metabolite. When the sulfoxide was dosed, the exposure of the sulfone achieved was as much as 2.9-fold higher than when the sulfone was directly dosed, thereby demonstrating that the sulfoxide served as an effective prodrug for the treatment of malaria.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Parasitemia/tratamento farmacológico , Pró-Fármacos/farmacologia , Pirazinas/farmacologia , Sulfonas/farmacologia , Sulfóxidos/farmacologia , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Antimaláricos/sangue , Antimaláricos/síntese química , Antimaláricos/farmacocinética , Biotransformação , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Expressão Gênica , Humanos , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Parasitemia/patologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética , Pirazinas/sangue , Pirazinas/síntese química , Pirazinas/farmacocinética , Sulfonas/sangue , Sulfonas/síntese química , Sulfonas/farmacocinética , Sulfóxidos/sangue , Sulfóxidos/síntese química , Sulfóxidos/farmacocinética , Resultado do Tratamento
3.
Artigo em Inglês | MEDLINE | ID: mdl-29941635

RESUMO

The 2-aminopyridine MMV048 was the first drug candidate inhibiting Plasmodium phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant Plasmodium falciparum and Plasmodium vivax clinical isolates. Excellent in vitro antiplasmodial activity translated into high efficacy in Plasmodium berghei and humanized P. falciparum NOD-scid IL-2Rγ null mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate in vivo intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation Plasmodium PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria.

4.
Molecules ; 22(4)2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358310

RESUMO

Insight into the mechanisms of intestinal transport and metabolism of aspalathin will provide important information for dose optimisation, in particular for studies using mouse models. Aspalathin transportation across the intestinal barrier (Caco-2 monolayer) tested at 1-150 µM had an apparent rate of permeability (Papp) typical of poorly absorbed compounds (1.73 × 10-6 cm/s). Major glucose transporters, sodium glucose linked transporter 1 (SGLT1) and glucose transporter 2 (GLUT2), and efflux protein (P-glycoprotein, PgP) (1.84 × 10-6 cm/s; efflux ratio: 1.1) were excluded as primary transporters, since the Papp of aspalathin was not affected by the presence of specific inhibitors. The Papp of aspalathin was also not affected by constituents of aspalathin-enriched rooibos extracts, but was affected by high glucose concentration (20.5 mM), which decreased the Papp value to 2.9 × 10-7 cm/s. Aspalathin metabolites (sulphated, glucuronidated and methylated) were found in mouse urine, but not in blood, following an oral dose of 50 mg/kg body weight of the pure compound. Sulphates were the predominant metabolites. These findings suggest that aspalathin is absorbed and metabolised in mice to mostly sulphate conjugates detected in urine. Mechanistically, we showed that aspalathin is not actively transported by the glucose transporters, but presumably passes the monolayer paracellularly.


Assuntos
Aspalathus/química , Chalconas/farmacocinética , Absorção Intestinal , Intestinos/química , Animais , Disponibilidade Biológica , Transporte Biológico , Células CACO-2 , Chalconas/administração & dosagem , Humanos , Camundongos , Permeabilidade , Extratos Vegetais/química , Urina/química
5.
Antimicrob Agents Chemother ; 60(5): 3065-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26953201

RESUMO

Malaria remains a great burden on humanity. Although significant advances have been made in the prevention and treatment of malaria, malaria control is now hindered by an increasing tolerance of the parasite to one or more drugs within artemisinin combination therapies; therefore, an urgent need exists for development of novel and improved therapies. The University of the Free State Chemistry Department previously synthesized an antimalarial compound, NP046. In vitro studies illustrated an enhanced efficacy against Plasmodium falciparum However, NP046 showed low bioavailability. Efforts to enhance the bioavailability of NP046 have resulted in the synthesis of a number of aminoalkylated diarylpropanes, including NP085 and NP102. Pharmacokinetic studies were conducted in C57BL/6 mice, with 15 mg/kg NP085 or NP102 administered orally and the 5 mg/kg NP085 or NP102 administered intravenously. Blood samples were collected by means of tail bleeding at predetermined time intervals. Drug concentrations were determined using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, and subsequently pharmacokinetic modeling was done for both compounds. NP085 and NP102 were incubated in vitro with human and mouse liver microsomes. Both compounds were also subjected to a parallel artificial membrane permeation assay. In vitro studies of NP085 and NP102 illustrated that both of the compounds are rapidly absorbed and undergo rapid hepatic metabolism. The maximum concentration of drug (Cmax) obtained following oral administration of NP085 and NP102 was 0.2 ± 0.4 and 0.7 ± 0.3 µM, respectively; the elimination half-life of both compounds was 6.1 h. NP085 and NP102 showed bioavailability levels of 8% and 22%, respectively.


Assuntos
Antimaláricos/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Antimaláricos/administração & dosagem , Antimaláricos/farmacologia , Humanos , Malária/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Modelos Teóricos , Plasmodium falciparum/efeitos dos fármacos
6.
Malar J ; 14: 8, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25563929

RESUMO

BACKGROUND: Even though malaria is a completely preventable and treatable disease, it remains a threat to human life and a burden to the global economy due to the emergence of multiple-drug resistant malaria parasites. According to the World Malaria Report 2013, in 2012 there were an estimated 207 million malaria cases and 627,000 deaths. Thus, the discovery and development of new, effective anti-malarial drugs are required. To achieve this goal, the Department of Chemistry at the University of the Free State has synthesized a number of novel amino-alkylated chalcones and analogues, which showed in vitro anti-malarial activity against both chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains. The lead compound (NP046) was selected for a comprehensive pharmacokinetic (PK) and in vivo efficacy evaluation in a mouse model. METHODS: In vivo efficacy: Water solutions of NP046 were administered orally at 50 and 10 mg/kg using oral gavage and IV at 5 and 1 mg/kg via the dorsal penile vein to Plasmodium berghei (ANKA strain) infected male C57BL/6 mice (n = 5), once a day for four days. Blood samples were collected via tail bleeding in tubes containing phosphate buffer saline (PBS) on day five to determine the % parasitaemia by flow cytometry.In vivo PK: NP046 solutions in water were administered orally (50 and 10 mg/kg) and IV (5 mg/kg) to male C57BL/6 mice (n = 5). Blood samples were collected via tail bleeding into heparinized tubes and analysed using a validated LC-MS/MS assay. Data obtained from the concentration-time profile was evaluated using Summit PK software to determine the PK parameters of NP046. RESULTS: NP046 inhibited parasite growth for the oral and IV groups. Better parasite growth inhibition was observed for the IV group. The PK evaluation of NP046 showed low oral bioavailability (3.2% and 6% at 50 mg/kg and 10 mg/kg dose, respectively and a moderate mean half-life ranging from 3.1 to 4.4 hours. CONCLUSION: Even though the oral bioavailability of NP046 is low, its percentage parasite growth inhibition is promising, but in order to improve the oral bioavailability, structure-activity-relationship (SAR) optimization studies are currently being conducted.


Assuntos
Antimaláricos/administração & dosagem , Antimaláricos/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Malária/tratamento farmacológico , Administração Oral , Animais , Sangue/parasitologia , Análise Química do Sangue , Cromatografia Líquida , Malária/parasitologia , Masculino , Camundongos Endogâmicos C57BL , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Plasmodium berghei/isolamento & purificação , Espectrometria de Massas em Tandem , Resultado do Tratamento
7.
Bioorg Med Chem ; 23(22): 7240-50, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26522089

RESUMO

Whole-cell high-throughput screening of a diverse SoftFocus library against Mycobacterium tuberculosis (Mtb) generated a novel aminopyrazolo[1,5-a]pyrimidine hit series. The synthesis and structure activity relationship studies identified compounds with potent antimycobacterial activity. The SAR of over 140 compounds shows that the 2-pyridylmethylamine moiety at the C-7 position of the pyrazolopyrimidine scaffold was important for Mtb activity, whereas the C-3 position offered a higher degree of flexibility. The series was also profiled for in vitro cytotoxicity and microsomal metabolic stability as well as physicochemical properties. Consequently liabilities to be addressed in a future lead optimization campaign have been identified.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazóis/química , Pirimidinas/química , Animais , Antituberculosos/química , Antituberculosos/metabolismo , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Desenho de Fármacos , Meia-Vida , Camundongos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/metabolismo , Pirazóis/síntese química , Pirazóis/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Ratos , Solubilidade , Relação Estrutura-Atividade
9.
J Med Chem ; 65(24): 16695-16715, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36507890

RESUMO

Iterative medicinal chemistry optimization of an ester-containing astemizole (AST) analogue 1 with an associated metabolic instability liability led to the identification of a highly potent 3-trifluoromethyl-1,2,4-oxadiazole analogue 23 (PfNF54 IC50 = 0.012 µM; PfK1 IC50 = 0.040 µM) displaying high microsomal metabolic stability (HLM CLint < 11.6 µL·min-1·mg-1) and > 1000-fold higher selectivity over hERG compared to AST. In addition to asexual blood stage activity, the compound also shows activity against liver and gametocyte life cycle stages and demonstrates in vivo efficacy in Plasmodium berghei-infected mice at 4 × 50 mg·kg-1 oral dose. Preliminary interrogation of the mode of action using live-cell microscopy and cellular heme speciation revealed that 23 could be affecting multiple processes in the parasitic digestive vacuole, with the possibility of a novel target at play in the organelles associated with it.


Assuntos
Antimaláricos , Malária , Camundongos , Animais , Plasmodium berghei , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Astemizol/farmacologia , Astemizol/uso terapêutico , Plasmodium falciparum/metabolismo , Malária/tratamento farmacológico , Malária/parasitologia , Modelos Animais de Doenças
10.
J Med Chem ; 64(8): 5198-5215, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33844521

RESUMO

A novel series of antimalarial benzimidazole derivatives incorporating phenolic Mannich base side chains at the C2 position, which possess dual asexual blood and sexual stage activities, is presented. Structure-activity relationship studies revealed that the 1-benzylbenzimidazole analogues possessed submicromolar asexual blood and sexual stage activities in contrast to the 1H-benzimidazole analogues, which were only active against asexual blood stage (ABS) parasites. Further, the former demonstrated microtubule inhibitory activity in ABS parasites but more significantly in stage II/III gametocytes. In addition to being bona fide inhibitors of hemozoin formation, the 1H-benzimidazole analogues also showed inhibitory effects on microtubules. In vivo efficacy studies in Plasmodium berghei-infected mice revealed that the frontrunner compound 41 exhibited high efficacy (98% reduction in parasitemia) when dosed orally at 4 × 50 mg/kg. Generally, the compounds were noncytotoxic to mammalian cells.


Assuntos
Antimaláricos/química , Benzimidazóis/química , Hemeproteínas/metabolismo , Bases de Mannich/química , Microtúbulos/metabolismo , Administração Oral , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Modelos Animais de Doenças , Desenho de Fármacos , Resistência a Medicamentos/efeitos dos fármacos , Estabilidade de Medicamentos , Meia-Vida , Hemeproteínas/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/metabolismo , Microtúbulos/efeitos dos fármacos , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/fisiologia , Relação Estrutura-Atividade
11.
ACS Infect Dis ; 7(1): 34-46, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33319990

RESUMO

Recent studies on 3,6-diphenylated imidazopyridazines have demonstrated impressive in vitro activity and in vivo efficacy in mouse models of malaria infection. Herein, we report the synthesis and antiplasmodium evaluation of a new series of amidated analogues and demonstrate that these compounds potently inhibit Plasmodium phosphatidylinositol-4-kinase (PI4K) type IIIß while moderately inhibiting cyclic guanidine monophosphate (cGMP)-dependent protein kinase (PKG) activity in vitro. Using in silico docking, we predict key binding interactions for these analogues within the adenosine triphosphate (ATP)-binding site of PI4K and PKG, paving the way for structure-based optimization of imidazopyridazines targeting both Plasmodium PI4K and PKG. While several derivatives showed low nanomolar antiplasmodium activity (IC50 < 100 nM), some compounds, including piperazine analogue 28, resulted in strong dual PI4K and PKG inhibition. The compounds also demonstrated transmission-blocking potential, evident from their potent inhibition of early- and late-stage gametocytes. Finally, the current compounds generally showed improved aqueous solubility and reduced hERG (human ether-a-go-go-related gene) channel inhibition.


Assuntos
1-Fosfatidilinositol 4-Quinase , Plasmodium , Proteínas Quinases Dependentes de GMP Cíclico , Guanidina , Fosfatidilinositóis , Plasmodium falciparum , Proteínas Quinases
12.
J Med Chem ; 64(13): 9444-9457, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34138573

RESUMO

Screening of a library of small polar molecules against Mycobacterium tuberculosis (Mtb) led to the identification of a potent benzoheterocyclic oxime carbamate hit series. This series was subjected to medicinal chemistry progression underpinned by structure-activity relationship studies toward identifying a compound for proof-of-concept studies and defining a lead optimization strategy. Carbamate and free oxime frontrunner compounds with good stability in liver microsomes and no hERG channel inhibition liability were identified and evaluated in vivo for pharmacokinetic properties. Mtb-mediated permeation and metabolism studies revealed that the carbamates were acting as prodrugs. Toward mechanism of action elucidation, selected compounds were tested in biology triage assays to assess their activity against known promiscuous targets. Taken together, these data suggest a novel yet unknown mode of action for these antitubercular hits.


Assuntos
Antituberculosos/farmacologia , Carbamatos/farmacologia , Compostos Heterocíclicos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oximas/farmacologia , Antituberculosos/química , Antituberculosos/metabolismo , Carbamatos/química , Carbamatos/metabolismo , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/química , Compostos Heterocíclicos/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/metabolismo , Oximas/química , Oximas/metabolismo , Relação Estrutura-Atividade
13.
J Med Chem ; 64(1): 719-740, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33395287

RESUMO

Phenotypic screening of a Medicines for Malaria Venture compound library against Mycobacterium tuberculosis (Mtb) identified a cluster of pan-active 2-pyrazolylpyrimidinones. The biology triage of these actives using various tool strains of Mtb suggested a novel mechanism of action. The compounds were bactericidal against replicating Mtb and retained potency against clinical isolates of Mtb. Although selected MmpL3 mutant strains of Mtb showed resistance to these compounds, there was no shift in the minimum inhibitory concentration (MIC) against a mmpL3 hypomorph, suggesting mutations in MmpL3 as a possible resistance mechanism for the compounds but not necessarily as the target. RNA transcriptional profiling and the checkerboard board 2D-MIC assay in the presence of varying concentrations of ferrous salt indicated perturbation of the Fe-homeostasis by the compounds. Structure-activity relationship studies identified potent compounds with good physicochemical properties and in vitro microsomal metabolic stability with moderate selectivity over cytotoxicity against mammalian cell lines.


Assuntos
Antituberculosos/química , Pirimidinonas/química , Animais , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meia-Vida , Humanos , Ferro/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Microssomos/metabolismo , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Pirazóis/química , Pirimidinonas/metabolismo , Pirimidinonas/farmacologia , Ratos , Relação Estrutura-Atividade
14.
J Med Chem ; 64(17): 12790-12807, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34414766

RESUMO

Phenotypic whole cell high-throughput screening of a ∼150,000 diverse set of compounds against Mycobacterium tuberculosis (Mtb) in cholesterol-containing media identified 1,3-diarylpyrazolyl-acylsulfonamide 1 as a moderately active hit. Structure-activity relationship (SAR) studies demonstrated a clear scope to improve whole cell potency to MIC values of <0.5 µM, and a plausible pharmacophore model was developed to describe the chemical space of active compounds. Compounds are bactericidal in vitro against replicating Mtb and retained activity against multidrug-resistant clinical isolates. Initial biology triage assays indicated cell wall biosynthesis as a plausible mode-of-action for the series. However, no cross-resistance with known cell wall targets such as MmpL3, DprE1, InhA, and EthA was detected, suggesting a potentially novel mode-of-action or inhibition. The in vitro and in vivo drug metabolism and pharmacokinetics profiles of several active compounds from the series were established leading to the identification of a compound for in vivo efficacy proof-of-concept studies.


Assuntos
Antituberculosos/farmacologia , Parede Celular/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Sulfonamidas/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Descoberta de Drogas , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/química
15.
J Med Chem ; 64(4): 2291-2309, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33573376

RESUMO

A novel diazaspiro[3.4]octane series was identified from a Plasmodium falciparum whole-cell high-throughput screening campaign. Hits displayed activity against multiple stages of the parasite lifecycle, which together with a novel sp3-rich scaffold provided an attractive starting point for a hit-to-lead medicinal chemistry optimization and biological profiling program. Structure-activity-relationship studies led to the identification of compounds that showed low nanomolar asexual blood-stage activity (<50 nM) together with strong gametocyte sterilizing properties that translated to transmission-blocking activity in the standard membrane feeding assay. Mechanistic studies through resistance selection with one of the analogues followed by whole-genome sequencing implicated the P. falciparum cyclic amine resistance locus in the mode of resistance.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Compostos de Espiro/farmacologia , Animais , Anopheles/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/metabolismo , Feminino , Células Germinativas/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Ratos , Compostos de Espiro/síntese química , Compostos de Espiro/metabolismo , Relação Estrutura-Atividade
16.
ACS Omega ; 5(12): 6967-6982, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32258933

RESUMO

A phenotypic whole cell high-throughput screen against the asexual blood and liver stages of the malaria parasite identified a benzimidazole chemical series. Among the hits were the antiemetic benzimidazole drug Lerisetron 1 (IC50 NF54 = 0.81 µM) and its methyl-substituted analogue 2 (IC50 NF54 = 0.098 µM). A medicinal chemistry hit to lead effort led to the identification of chloro-substituted analogue 3 with high potency against the drug-sensitive NF54 (IC50 NF54 = 0.062 µM) and multidrug-resistant K1 (IC50 K1 = 0.054 µM) strains of the human malaria parasite Plasmodium falciparum. Compounds 2 and 3 gratifyingly showed in vivo efficacy in both Plasmodium berghei and P. falciparum mouse models of malaria. Cardiotoxicity risk as expressed in strong inhibition of the human ether-a-go-go-related gene (hERG) potassium channel was identified as a major liability to address. This led to the synthesis and biological assessment of around 60 analogues from which several compounds with improved antiplasmodial potency, relative to the lead compound 3, were identified.

17.
ACS Infect Dis ; 6(7): 1951-1964, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32470286

RESUMO

Phenotypic whole-cell screening against Mycobacterium tuberculosis (Mtb) in glycerol-alanine-salts supplemented with Tween 80 and iron (GASTE-Fe) media led to the identification of a 2-aminoquinazolinone hit compound, sulfone 1 which was optimized for solubility by replacing the sulfone moiety with a sulfoxide 2. The synthesis and structure-activity relationship (SAR) studies identified several compounds with potent antimycobacterial activity, which were metabolically stable and noncytotoxic. Compound 2 displayed favorable in vitro properties and was therefore selected for in vivo pharmacokinetic (PK) studies where it was found to be extensively metabolized to the sulfone 1. Both derivatives exhibited promising PK parameters; however, when 2 was evaluated for in vivo efficacy in an acute TB infection mouse model, it was found to be inactive. In order to understand the in vitro and in vivo discrepancy, compound 2 was subsequently retested in vitro using different Mtb strains cultured in different media. This revealed that activity was only observed in media containing glycerol and led to the hypothesis that glycerol was not used as a primary carbon source by Mtb in the mouse lungs, as has previously been observed. Support for this hypothesis was provided by spontaneous-resistant mutant generation and whole genome sequencing studies, which revealed mutations mapping to glycerol metabolizing genes indicating that the 2-aminoquinazolinones kill Mtb in vitro via a glycerol-dependent mechanism of action.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Animais , Antituberculosos/farmacologia , Desenho de Fármacos , Camundongos , Relação Estrutura-Atividade
18.
J Med Chem ; 63(21): 13013-13030, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33103428

RESUMO

A series of 2,4-disubstituted imidazopyridines, originating from a SoftFocus Kinase library, was identified from a high throughput phenotypic screen against the human malaria parasite Plasmodium falciparum. Hit compounds showed moderate asexual blood stage activity. During lead optimization, several issues were flagged such as cross-resistance against the multidrug-resistant K1 strain, in vitro cytotoxicity, and cardiotoxicity and were addressed through structure-activity and structure-property relationship studies. Pharmacokinetic properties were assessed in mice for compounds showing desirable in vitro activity, a selectivity window over cytotoxicity, and microsomal metabolic stability. Frontrunner compound 37 showed good exposure in mice combined with good in vitro activity against the malaria parasite, which translated into in vivo efficacy in the P. falciparum NOD-scid IL-2Rγnull (NSG) mouse model. Preliminary mechanistic studies suggest inhibition of hemozoin formation as a contributing mode of action.


Assuntos
Antimaláricos/química , Hemeproteínas/antagonistas & inibidores , Imidazóis/química , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/antagonistas & inibidores , Piridinas/química , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Modelos Animais de Doenças , Meia-Vida , Hemeproteínas/metabolismo , Imidazóis/metabolismo , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Microssomos Hepáticos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Piridinas/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Relação Estrutura-Atividade
19.
ACS Infect Dis ; 5(2): 303-315, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30525439

RESUMO

A drug repositioning approach was leveraged to derivatize astemizole (AST), an antihistamine drug whose antimalarial activity was previously identified in a high-throughput screen. The multistage activity potential against the Plasmodium parasite's life cycle of the subsequent analogues was examined by evaluating against the parasite asexual blood, liver, and sexual gametocytic stages. In addition, the previously reported contribution of heme detoxification to the compound's mode of action was interrogated. Ten of the 17 derivatives showed half-maximal inhibitory concentrations (IC50s) of <0.1 µM against the chloroquine (CQ)-sensitive Plasmodium falciparum NF54 ( PfNF54) strain while maintaining submicromolar potency against the multidrug-resistant strain, PfK1, with most showing low likelihood of cross-resistance with CQ. Selected analogues ( PfNF54-IC50 < 0.1 µM) were tested for cytotoxicity on Chinese hamster ovarian (CHO) cells and found to be highly selective (selectivity index > 100). Screening of AST and its analogues against gametocytes revealed their moderate activity (IC50: 1-5 µM) against late stage P. falciparum gametocytes, while the evaluation of activity against P. berghei liver stages identified one compound (3) with 3-fold greater activity than the parent AST compound. Mechanistic studies showed a strong correlation between in vitro inhibition of ß-hematin formation by the AST derivatives and their antiplasmodium IC50s. Analyses of intracellular inhibition of hemozoin formation within the parasite further yielded signatures attributable to a possible perturbation of the heme detoxification machinery.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Astemizol/análogos & derivados , Hemeproteínas/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Animais , Células CHO , Cloroquina/farmacologia , Cricetulus , Reposicionamento de Medicamentos , Resistência a Múltiplos Medicamentos , Concentração Inibidora 50 , Estágios do Ciclo de Vida
20.
Medchemcomm ; 9(10): 1733-1745, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429978

RESUMO

3,6-Diarylated imidazopyridazines have recently been shown to possess good in vitro antiplasmodial and in vivo antimalarial activity. However, frontrunner compounds have been associated with poor solubility and a hERG (human ether-a-go-go-related gene) inhibition liability raising concerns for potential cardiotoxicity risks. Herein, we report the synthesis and structure-activity relationship studies of new imidazopyridazines aimed at improving aqueous solubility and countering hERG inhibition while maintaining antiplasmodial potency. While we identified new analogues with potent antiplasmodial activity (IC50 = 0.031 µM against the NF54 drug-sensitive strain, and IC50 = 0.0246 µM against the K1 multidrug resistant strain), hERG inhibition remained an issue. Excitingly, on the other hand, new analogues with a substantially improved hERG inhibition profile (IC50 = 7.83-32.3 µM) with sub-micromolar antiplasmodial activity (NF54, IC50 = 0.151-0.922 µM) were identified. Similarly, the introduced molecular features also resulted in analogues with moderate to high solubility (60-200 µM) while also displaying sub-micromolar antiplasmodial potency (NF54, IC50 = 0.136-0.99 µM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA