Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 8563, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39362878

RESUMO

The development of nuclear fusion as a safe and virtually limitless power source is receiving growing attention in the context of looming energy crisis and climate change. ITER project stands as the flagship international initiative and is advancing steadily. The construction of the Tokamak Complex is nearly finished, and the assembly of core components has begun on site. Simultaneously, the design is being finalized, and the safety case is becoming more concrete. Current approaches to radiation safety demonstration using 3D nuclear analysis with the Monte Carlo code MCNP require sophisticated artifacts to sew together simulations in separate models for the Tokamak and the rest of the facility. This results in cumbersome studies and, consequently, challengeable conclusions. To address this issue, we have built the an integral MCNP model of the ITER facility: the ITER full model. Along with improvements to the D1SUNED code, we illustrate its computational practicality and pertinence in two meaningful simulations for ITER safety case. This work represents the culmination of a two-decade-long effort of ITER modelling aiming to demonstrate adequate radiation safety. Beyond supporting the remaining design tasks, this model simplifies the corresponding 3D nuclear analysis and improves the robustness of the ITER safety case.

2.
Sci Rep ; 13(1): 3544, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864208

RESUMO

During ITER operational life, a remote-handled cask will be used to transfer In-Vessel components to the Hot Cell for maintenance, storage and decommissioning purposes. Due to the distribution of penetrations for system allocation in the facility, the radiation field of each transfer operation presents a high spatial variability; all operations must be studied independently for workers and electronics protection. In this paper, we present a fully representative approach to describe the radiation environment during the complete remote-handling scenario of In-Vessel components in the ITER facility. The impact of all relevant radiation sources during different stages of the operation is addressed. As-built structures and 2020 baseline designs are considered to produce the most detailed neutronics model of the Tokamak Complex, the 400,000-tonne civil structure hosting the tokamak, up to date. Novel capabilities of the D1SUNED code have allowed to compute the integral dose, the dose rate and the photon-induced neutron flux of both moving and static radiation sources. Time bins are included in the simulations to compute the dose rate caused by In-Vessel components at all positions along the transfer. The time evolution of the dose rate is built in video format with a 1-m resolution, especially valuable for hot-spots identification.

3.
Rev Sci Instrum ; 79(10): 10F301, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044614

RESUMO

The diagnostic designs for the Laser Megajoule (LMJ) will require components to operate in environments far more severe than those encountered in present facilities. This harsh environment will be induced by fluxes of neutrons, gamma rays, energetic ions, electromagnetic radiations, and, in some cases, debris and shrapnel, at levels several orders of magnitude higher than those experienced today on existing facilities. The lessons learned about the vulnerabilities of present diagnostic parts fielded mainly on OMEGA for many years, have been very useful guide for the design of future LMJ diagnostics. The present and future LMJ diagnostic designs including this vulnerability approach and their main mitigation techniques will be presented together with the main characteristics of the LMJ facility that provide for diagnostic protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA