RESUMO
Clonal haematopoiesis involves the expansion of certain blood cell lineages and has been associated with ageing and adverse health outcomes1-5. Here we use exome sequence data on 628,388 individuals to identify 40,208 carriers of clonal haematopoiesis of indeterminate potential (CHIP). Using genome-wide and exome-wide association analyses, we identify 24 loci (21 of which are novel) where germline genetic variation influences predisposition to CHIP, including missense variants in the lymphocytic antigen coding gene LY75, which are associated with reduced incidence of CHIP. We also identify novel rare variant associations with clonal haematopoiesis and telomere length. Analysis of 5,041 health traits from the UK Biobank (UKB) found relationships between CHIP and severe COVID-19 outcomes, cardiovascular disease, haematologic traits, malignancy, smoking, obesity, infection and all-cause mortality. Longitudinal and Mendelian randomization analyses revealed that CHIP is associated with solid cancers, including non-melanoma skin cancer and lung cancer, and that CHIP linked to DNMT3A is associated with the subsequent development of myeloid but not lymphoid leukaemias. Additionally, contrary to previous findings from the initial 50,000 UKB exomes6, our results in the full sample do not support a role for IL-6 inhibition in reducing the risk of cardiovascular disease among CHIP carriers. Our findings demonstrate that CHIP represents a complex set of heterogeneous phenotypes with shared and unique germline genetic causes and varied clinical implications.
Assuntos
COVID-19 , Doenças Cardiovasculares , Humanos , Hematopoiese Clonal/genética , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genéticaRESUMO
BACKGROUND: The human small airway epithelium (SAE) plays a central role in the early events in the pathogenesis of most inherited and acquired lung disorders. Little is known about the molecular phenotypes of the specific cell populations comprising the SAE in humans, and the contribution of SAE specific cell populations to the risk for lung diseases. METHODS: Drop-seq single-cell RNA-sequencing was used to characterize the transcriptome of single cells from human SAE of nonsmokers and smokers by bronchoscopic brushing. RESULTS: Eleven distinct cell populations were identified, including major and rare epithelial cells, and immune/inflammatory cells. There was cell type-specific expression of genes relevant to the risk of the inherited pulmonary disorders, genes associated with risk of chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis and (non-mutated) driver genes for lung cancers. Cigarette smoking significantly altered the cell type-specific transcriptomes and disease risk-related genes. CONCLUSIONS: This data provides new insights into the possible contribution of specific lung cells to the pathogenesis of lung disorders.
Assuntos
Fumar Cigarros/genética , Testes Genéticos/métodos , Pneumopatias/genética , Mucosa Respiratória/fisiologia , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Remodelação das Vias Aéreas/genética , Broncoscopia/métodos , Fumar Cigarros/efeitos adversos , Expressão Gênica , Humanos , Pneumopatias/diagnóstico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Mucosa Respiratória/patologiaRESUMO
In this study, we leveraged the combined evidence of rare coding variants and common alleles to identify therapeutic targets for osteoporosis. We undertook a large-scale multiancestry exome-wide association study for estimated bone mineral density, which showed that the burden of rare coding alleles in 19 genes was associated with estimated bone mineral density (P < 3.6 × 10-7). These genes were highly enriched for a set of known causal genes for osteoporosis (65-fold; P = 2.5 × 10-5). Exome-wide significant genes had 96-fold increased odds of being the top ranked effector gene at a given GWAS locus (P = 1.8 × 10-10). By integrating proteomics Mendelian randomization evidence, we prioritized CD109 (cluster of differentiation 109) as a gene for which heterozygous loss of function is associated with higher bone density. CRISPR-Cas9 editing of CD109 in SaOS-2 osteoblast-like cell lines showed that partial CD109 knockdown led to increased mineralization. This study demonstrates that the convergence of common and rare variants, proteomics and CRISPR can highlight new bone biology to guide therapeutic development.
Assuntos
Predisposição Genética para Doença , Osteoporose , Humanos , Sequenciamento do Exoma , Osteoporose/genética , Densidade Óssea/genética , Alelos , Fatores de Transcrição/genética , Estudo de Associação Genômica AmplaRESUMO
Body fat distribution is a major, heritable risk factor for cardiometabolic disease, independent of overall adiposity. Using exome-sequencing in 618,375 individuals (including 160,058 non-Europeans) from the UK, Sweden and Mexico, we identify 16 genes associated with fat distribution at exome-wide significance. We show 6-fold larger effect for fat-distribution associated rare coding variants compared with fine-mapped common alleles, enrichment for genes expressed in adipose tissue and causal genes for partial lipodystrophies, and evidence of sex-dimorphism. We describe an association with favorable fat distribution (p = 1.8 × 10-09), favorable metabolic profile and protection from type 2 diabetes (~28% lower odds; p = 0.004) for heterozygous protein-truncating mutations in INHBE, which encodes a circulating growth factor of the activin family, highly and specifically expressed in hepatocytes. Our results suggest that inhibin ßE is a liver-expressed negative regulator of adipose storage whose blockade may be beneficial in fat distribution-associated metabolic disease.
Assuntos
Diabetes Mellitus Tipo 2 , Subunidades beta de Inibinas/genética , Tecido Adiposo , Adiposidade/genética , Diabetes Mellitus Tipo 2/genética , Exoma/genética , Humanos , MutaçãoRESUMO
The club cell, a small airway epithelial (SAE) cell, plays a central role in human lung host defense. We hypothesized that subpopulations of club cells with distinct functions may exist. The SAE of healthy nonsmokers and healthy cigarette smokers were evaluated by single-cell RNA sequencing, and unsupervised clustering revealed subpopulations of SCGCB1A1+KRT5loMUC5AC- club cells. Club cell heterogeneity was supported by evaluations of SAE tissue sections, brushed SAE cells, and in vitro air-liquid interface cultures. Three subpopulations included: (1) progenitor; (2) proliferating; and (3) effector club cells. The progenitor club cell population expressed high levels of mitochondrial, ribosomal proteins, and KRT5 relative to other club cell populations and included a differentiation branch point leading to mucous cell production. The small proliferating population expressed high levels of cyclins and proliferation markers. The effector club cell cluster expressed genes related to host defense, xenobiotic metabolism, and barrier functions associated with club cell function. Comparison of smokers vs. nonsmokers demonstrated that smoking limited the extent of differentiation of all three subclusters and altered SAM pointed domain-containing Ets transcription factor (SPDEF)-regulated transcription in the effector cell population leading to a change in the location of the branch point for mucous cell production, a potential explanation for the concomitant reduction in effector club cells and increase in mucous cells in smokers. These observations provide insights into both the makeup of human SAE club cell subpopulations and the smoking-induced changes in club cell biology.
RESUMO
Identifying genotypes and phenotypes that enhance an organism's ability to survive stress is of interest. We used Caenorhabditis elegans mutants, RNA interference (RNAi), and the chemical 5-fluorodeoxyuridine (FUDR) to test the hypothesis that a reduction in progeny would increase oxygen deprivation (anoxia) survival. In the hermaphrodite gonad, germ line processes such as spermatogenesis and oogenesis can be simultaneously as well as independently disrupted by genetic mutations. We analyzed genetic mutants [glp-1(q158), glp-4(bn2ts), plc-1(rx1), ksr-1(ku68), fog-2(q71), fem-3(q20), spe-9(hc52ts), fer-15(hc15ts)] with reduced progeny production due to various reproductive defects. Furthermore, we used RNAi to inhibit the function of gene products in the RTK/Ras/MAPK signaling pathway, which is known to be involved in a variety of developmental processes including gonad function. We determined that reduced progeny production or complete sterility enhanced anoxia survival except in the case of sterile hermaphrodites [spe-9(hc52ts), fer-15(hc15ts)] undergoing oocyte maturation and ovulation as exhibited by the presence of laid unfertilized oocytes. Furthermore, the fog-2(q71) long-term anoxia survival phenotype was suppressed when oocyte maturation and ovulation were induced by mating with males that have functional or nonfunctional sperm. The mutants with a reduced progeny production survive long-term anoxia in a daf-16- and hif-1-independent manner. Finally, we determined that wild-type males were able to survive long-term anoxia in a daf-16-independent manner. Together, these results suggest that the insulin signaling pathway is not the only mechanism to survive oxygen deprivation and that altering gonad function, in particular oocyte maturation and ovulation, leads to a physiological state conducive for oxygen deprivation survival.
Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Ovulação/fisiologia , Fatores de Transcrição/fisiologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Feminino , Floxuridina/farmacologia , Fatores de Transcrição Forkhead , Hipóxia/fisiopatologia , Masculino , Mutação , Fenótipo , Interferência de RNA , Reprodução/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The migration of primordial germ cells (PGCs) from their place of origin to the embryonic gonad is an essential reproductive feature in many animal species. In Drosophila melanogaster, a single G protein-coupled receptor, Trapped in endoderm 1 (Tre1), mediates germ cell polarization at the onset of active migration and directs subsequent migration of PGCs through the midgut primordium. How these different aspects of cell behavior are coordinated through a single receptor is not known. We demonstrate that two highly conserved domains, the E/N/DRY and NPxxY motifs, have overlapping and unique functions in Tre1. The Tre1-NRY domain via G protein signaling is required for reading and responding to guidance and survival cues controlled by the lipid phosphate phosphatases Wunen and Wunen2. In contrast, the Tre1-NPIIY domain has a separate role in Rho1- and E-cadherin-mediated polarization at the initiation stage independent of G protein signaling. We propose that this bifurcation of the Tre1 G protein-coupled receptor signaling response via G protein-dependent and independent branches enables distinct spatiotemporal regulation of germ cell migration.
Assuntos
Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Germinativas Embrionárias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Animais Geneticamente Modificados , Caderinas/genética , Caderinas/metabolismo , Movimento Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Genótipo , Ligantes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Microscopia de Vídeo , Mutação , Fenótipo , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Domínios Proteicos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismoRESUMO
Embryonic germ cell migration is a vital component of the germline lifecycle. The translocation of germ cells from the place of origin to the developing somatic gonad involves several processes including passive movements with underlying tissues, transepithelial migration, cell adhesion dynamics, the establishment of environmental guidance cues and the ability to sustain directed migration. How germ cells accomplish these feats in established model organisms will be discussed in this review, with a focus on recent discoveries and themes conserved across species.