Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; 44(7): 1296-1324, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38105487

RESUMO

Microalgae have long been regarded as a promising solution for biological carbon abatement from the power industry, offering renewable biomass without competing for land or water resources used for food crops. In this study, we extensively examined the application of photosynthetic microorganisms for closing carbon, nitrogen, and micronutrient loops in the power industry. Subsequently, we explored the bottom-up integration of algal biorefineries into power industry waste streams for increased economic benefits and reduced environmental impacts. Analysis of the available data indicated that microalgae integration with the power industry is primarily performed using flue-gas-assisted cultivation. This approach allows for carbon sequestration typically below one gram per liter per day, too low to significantly impact carbon abatement at achievable scales of microalgae cultivation. Alternative approaches are also being explored. For example, soluble bicarbonate platforms allow for higher biomass productivity and temporary carbon storage. Meanwhile, the use of ashes and waste heat and thermophilic strains can result in lower cultivation costs and better control of cultivation conditions. These approaches offer further incremental improvement to microalgae-based carbon abatement systems in the power industry but are unlikely to be an umbrella solution for carbon reduction. Consequently, in the near term, microalgae-based carbon valorization systems are likely to be limited to niche applications involving the synthesis of high-value products. For microalgae to truly transform carbon abatement processes radical improvements in both biology and engineering approaches are urgently needed.


Assuntos
Resíduos Industriais , Microalgas , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Biomassa , Carbono/metabolismo , Centrais Elétricas , Gerenciamento de Resíduos/métodos
2.
Molecules ; 26(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562176

RESUMO

In the last 3 years alone, over 10,000 publications have appeared on the topic of dye removal, including over 300 reviews. Thus, the topic is very relevant, although there are few articles on the practical applications on an industrial scale of the results obtained in research laboratories. Therefore, in this review, we focus on advanced oxidation methods integrated with biological methods, widely recognized as highly efficient treatments for recalcitrant wastewater, that have the best chance of industrial application. It is extremely important to know all the phenomena and mechanisms that occur during the process of removing dyestuffs and the products of their degradation from wastewater to prevent their penetration into drinking water sources. Therefore, particular attention is paid to understanding the mechanisms of both chemical and biological degradation of dyes, and the kinetics of these processes, which are important from a design point of view, as well as the performance and implementation of these operations on a larger scale.


Assuntos
Corantes/isolamento & purificação , Corantes/metabolismo , Poluentes Ambientais/isolamento & purificação , Poluentes Ambientais/metabolismo , Biodegradação Ambiental , Oxirredução
3.
J Environ Manage ; 265: 110502, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32275237

RESUMO

The main objective of this study was to develop the treatment system to change wastewater into a reliable source of recyclable water within the textile plant. Therefore, a highly polluted industrial wastewater originated in the dyeing of cotton was subjected to a multi-step treatment. The raw wastewater was characterized by the concentration of Reactive Black 5, the azo dye, as high as 842 mg/L, extreme alkalinity (pH 11.26) and salinity (NaCl concentration 52,290 mg/L). Correspondingly, the chemical oxygen demand (COD) was equal to 3440 mg/L and the total organic carbon (TOC) was 1790 mg/L in this wastewater. This salty, hardly degradable wastewater underwent the electrocoagulation (EC) on an industrial scale in the first step of the treatment. Although the industrial EC resulted in 84% of color removal in a very short time of 8 min, the wastewater was still characterized by an extremally high absorbance which corresponded to 100 mg/L of RB5. Moreover, EC resulted in the occurrence of burdensome by-products, of which one was identified in this study as an aniline derivative. The by-products contributed to high residual COD and TOC after EC (2120 mg/L and 1052 mg/L, respectively). Consequently, the catalytic ozonation was used by us as a second, the polishing, step of the treatment. The catalytic ozonation was found efficient in the removal of the residual color and colorless by-products. The wastewater after catalytic ozonation was colorless and the final COD and TOC decreased to 1283 and 695 mg/L, respectively. The average oxidation state (AOS), spectra analysis, and the toxicity assay showed catalytic ozonation efficient in the by-products oxidation. Consequently, the catalytic action of activated carbon (AC) was proved for the ozonation of textile wastewater. Ultimately, the recycling of purified wastewater into dyeing resulted in a very good color quality of textile samples (DECMC values below limiting value equal to 1.0).


Assuntos
Ozônio , Poluentes Químicos da Água , Corantes , Eletrocoagulação , Resíduos Industriais , Indústria Têxtil , Têxteis , Eliminação de Resíduos Líquidos , Águas Residuárias
4.
Bioprocess Biosyst Eng ; 42(10): 1635-1645, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31203448

RESUMO

Laccases have received the attention of researchers in the last few decades due to their ability to degrade phenolic and lignin-related compounds. This study aimed at obtaining the highest possible laccase activity and evaluating the methods of its purification. The crude laccase from bioreactor cultivation of Cerrena unicolor fungus was purified using ultrafiltration, aqueous two-phase extraction (ATPE) and foam fractionation (FF), which allowed for the assessment of these three downstream processing (DSP) methods. The repeated fed-batch cultivation mode applied for the enzyme production resulted in a high laccase specific activity in fermentation broth of 204.1 U/mg. The use of a specially constructed spin filter inside the bioreactor enabled the integration of enzyme biosynthesis and biomass filtration in one apparatus. Other methods of laccase concentration and purification, namely ATPE and FF, proved to be useful for laccase separation; however, the efficiency of FF was rather low (recovery yield of 24.9% and purification fold of 1.4). Surprisingly, the recovery yield after ATPE in a PEG 6000-phosphate system in salt phase was higher (97.4%) than after two-step ultrafiltration (73.7%). Furthermore, it was demonstrated that a simple, two-step purification procedure resulted in separation of two laccase isoforms with specific activity of 2349 and 3374 U/mg. All in all, a compact integrated system for the production, concentration and separation of fungal laccases was proposed.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Lacase/química , Lacase/isolamento & purificação , Polyporales/enzimologia
5.
Chem Zvesti ; 72(3): 555-566, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29568151

RESUMO

An approach to describe continuous partitioning of Cerrena unicolor laccase in a PEG 6000-phosphate aqueous two-phase system was proposed. The laccase was separated from crude supernatant of C. unicolor-submerged culture, and all the experiments were carried out in 25 °C and pH 7 conditions. Masses of both phases and their compositions at phase equilibrium, as well as laccase activity concentrations at different mixing points, were measured in batch experiments. An empirical short-cut method was developed which allows for calculation of mass and volume fractions of the phases, laccase concentration factors, and laccase recoveries. Theoretical predictions were verified by several experiments carried out in a special mixer-settler unit with automatic substrate feed and continuous collection of separated phases. Required concentration of the laccase was possible to achieve in a one-step extraction process in the mixer-settler unit. The predictions of the short-cut method were compared to the results of experimental measurements of phase compositions, phase volume fractions, concentration factors and enzymatic yields at steady-state operation of the extraction unit. The values of experimental results lay well within the 10% error range of the predicted values.

6.
J Environ Manage ; 195(Pt 2): 166-173, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27397840

RESUMO

The textile industry demands huge volumes of high quality water which converts into wastewater contaminated by wide spectrum of chemicals. Estimation of textile wastewater influence on the aquatic systems is a very important issue. Therefore, closing of the water cycle within the factories is a promising method of decreasing its environmental impact as well as operational costs. Taking both reasons into account, the aim of this work was to establish the acute toxicity of the textile wastewater before and after separate chemical, biological as well as combined chemical-biological treatment. For the first time the effects of three different combinations of chemical and biological methods were investigated. The acute toxicity analysis were evaluated using the Microtox® toxicity test. Ozonation in two reactors of working volume 1 dm3 (stirred cell) and 20 dm3 (bubble column) were tested as chemical process, while biodegradation was conducted in two, different systems - Sequence Batch Reactors (SBR; working volume 1.5 dm3) and Horizontal Continuous Flow Bioreactor (HCFB; working volume 12 dm3). The untreated wastewater had the highest toxicity (EC50 value in range: 3-6%). Ozonation caused lower reduction of the toxicity than biodegradation. In the system with SBR the best results were obtained for the biodegradation followed by the ozonation and additional biodegradation - 96% of the toxicity removal. In the second system (with HCFB) two-stage treatment (biodegradation followed by the ozonation) led to the highest toxicity reduction (98%).


Assuntos
Ozônio , Águas Residuárias , Biodegradação Ambiental , Resíduos Industriais , Indústria Têxtil , Têxteis , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/metabolismo
7.
Biotechnol Lett ; 38(4): 667-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26699894

RESUMO

OBJECTIVE: This work is the first application of a morphological engineering technique called microparticle-enhanced cultivation (MPEC) aimed at the facilitation of laccase production in the submerged cultures by two basidiomycetes species Cerrena unicolor and Pleurotus sapidus. RESULTS: The positive effect of the applied 10 µm Al2O3 microparticles at concentrations from 5 to 30 g Al2O3 l(-1) was shown. Laccase activity increased 3.5-fold for C. unicolor and 2-fold for P. sapidus at 15 g Al2O3 l(-1) on 9 and 14 day of the cultivation, respectively, compared to the control culture without microparticles. The increase of laccase activity in the cultivation broths was caused by the action of Al2O3 microparticles on the agglomeration of hyphae. It led to the decrease of the size of the pellets, (on average by 2 mm for C. unicolor), the change of their shape (star-shaped pellets for C. unicolor) and the change of their structure (more compact pellets for P. sapidus). CONCLUSIONS: Application of MPEC for the submerged cultures of two laccase-producing basidiomycetes proved successful in increasing of enzyme production.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Meios de Cultura/farmacologia , Lacase/biossíntese , Óxido de Alumínio/química , Basidiomycota/enzimologia , Bioengenharia , Reatores Biológicos , Fermentação , Proteínas Fúngicas/biossíntese , Microbiologia Industrial
8.
Water Sci Technol ; 74(5): 1079-87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27642827

RESUMO

Following new trends we applied oxygen uptake rate (OUR) tests as well as long-term tests (in two batch bioreactors systems) in order to assess the biodegradability of textile wastewater. Effluents coming from a dyeing factory were divided into two streams which differed in inorganic and organic contaminants loads. Usefulness of the stream division was proved. Biodegradation of the low-loaded stream led to over 97% reduction of biochemical oxygen demand (BOD5) together with 80% reduction of chemical oxygen demand (COD) and total organic carbon (TOC). Most of the controlled parameter values were below the levels allowed by legislation for influents to surface water, whereas the high-loaded stream was so contaminated with recalcitrant organic compounds that despite the reduction of BOD5 by over 95%, COD, TOC, total nitrogen and total phosphorus levels exceeded permissible values. OUR tests were aimed at determination of the following kinetic parameters: maximum specific growth rate (µMax), half-saturation constant, hydrolysis constant and decay coefficient for activated sludge biomass for both types of textile wastewater studied. The values of kinetic parameters will be applied in activated sludge models used for prediction and optimisation of biological treatment of textile wastewater.


Assuntos
Resíduos Industriais/análise , Indústria Têxtil , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio , Biomassa , Reatores Biológicos , Corantes , Nitrogênio/metabolismo , Fósforo , Esgotos/química , Eliminação de Resíduos Líquidos
9.
Water Sci Technol ; 74(8): 1867-1875, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27789887

RESUMO

The aims of the present work were to assess the application of a chemical process to degrade a mixture of parabens and determine the influence of a natural river water matrix on toxicity. Model effluents containing either a single compound, namely methylparaben, ethylparaben, propylparaben, butylparaben, benzylparaben or p-hydroxybenzoic acid, or to mimic realistic conditions a mixture of the six compounds was used. Fenton process was applied to reduce the organic charge and toxic properties of the model effluents. The efficiency of the decontamination has been investigated using a chemical as well as a toxicological approach. The potential reduction of the effluents' toxicity after Fenton treatment was evaluated by assessing (i) Vibrio fischeri luminescence inhibition, (ii) lethal effects amongst freshwater Asian clams (Corbicula fluminea), and (iii) the impact on mammalian neuronal activity using brain slices. From the environmental point of view such a broad toxicity analysis has been performed for the first time. The results indicate that Fenton reaction is an effective method for the reduction of chemical oxygen demand of a mixture of parabens and their toxicity to V. fischeri and C. fluminea. However, no important differences were found between raw and treated samples in regard to mammalian neuronal activity.


Assuntos
Parabenos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Aliivibrio fischeri/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Corbicula/efeitos dos fármacos , Feminino , Oxirredução , Parabenos/toxicidade , Ratos , Ratos Wistar , Poluentes Químicos da Água/toxicidade
10.
World J Microbiol Biotechnol ; 32(12): 193, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27718148

RESUMO

Morphological engineering techniques have recently gained popularity as they are used for increasing the productivity of a variety of metabolites and enzymes in fungi growing in submerged cultures. Their action is mainly associated with the changes they evoke in fungal morphology. Traditional morphological engineering approaches include manipulation of spore concentration, pH-shifting and mechanical stress exerted by stirring and aeration. As the traditional methods proved to be insufficient, modern techniques such as changes of medium osmolality or addition of mineral microparticles to the media (microparticle-enhanced cultivation, MPEC) were proposed. Despite the fact that this area of knowledge is still being developed, there are a fair amount of scientific articles concerning the cultivations of filamentous fungi with the use of these techniques. It was described that in Ascomycetes fungi both MPEC or change of osmolality successfully led to the change of mycelial morphology, which appeared to be favorable for increased productivity of secondary metabolites and enzymes. There are also limited but very promising reports involving the successful application of MPEC with Basidiomycetes species. Despite the fact that the mineral microparticles behave differently for various microorganisms, being strain and particle specific, the low cost of its application is a great benefit. This paper reviews the application of the modern morphology engineering techniques. The authors critically assess the advantages, shortcomings, and future prospects of their application in the cultivation of fungi.


Assuntos
Ascomicetos/fisiologia , Basidiomycota/fisiologia , Meios de Cultura/química , Engenharia Metabólica/métodos , Reatores Biológicos , Microbiologia Industrial , Concentração Osmolar , Fenótipo
11.
Chemosphere ; 291(Pt 1): 132742, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34736944

RESUMO

This article presents the results of studies on the degradation of ibuprofen transformation products: 1-hydroxyibuprofen (1OHIBF), 4-ethylbenzaldehyde (4EBA), 1-[4-(2-methylpropyl)phenyl]ethan-1-ol (MPPE) in water. To the best of our knowledge, this is the first paper where the ozonation and photodegradation (VIS and UV photolysis, degradation in H2O2/UV system, photosensitized oxidation) of 1OHIBF, 4EBA and MPPE are reported. The processes were performed in demineralized and natural river water. The influence of various reaction parameters on the removal degree was checked. Both, photolysis under VIS light and photosensitized oxidation of target compounds are very low-efficient processes. Ozonation and degradation in H2O2/UV system are effective methods for ibuprofen derivatives degradation. Components present in river water reduced removal degree of investigated compounds during ozonation and degradation in H2O2/UV system. The biodegradability assessment using the Average Oxidation State (AOS) and COD/TOC ratio proved the formation of more oxidized by-products during both processes. The determined second-order rate constants for ozone reaction with 1OHIBF, 4EBA and MPPE are 0.1 ± 0.01, 10.95 ± 1.36 and 3.04 ± 0.33 M-1 s-1, respectively. The calculated reaction rate constants of hydroxyl radicals with MPPE, 4EBA and 1OHIBF are 3.57 × 109, 6.83 × 109 and 1.06 × 109 M-1 s-1, respectively.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Ibuprofeno , Cinética , Oxirredução , Fotólise , Água , Poluentes Químicos da Água/análise
12.
Membranes (Basel) ; 12(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35207072

RESUMO

The influence of various factors on the removal efficiency of selected pharmaceuticals by membrane filtration was investigated. Several commercial polymer membranes were used for nanofiltration (NF) from various manufacturers. The studies were conducted for ibuprofen (IBF), amoxicillin (AMX), diclofenac (DCF), tetracycline (TRC), salicylic acid (SA) and acetylsalicylic acid (ASA). The influence of the structure and properties of the tested compounds on the retention coefficient and filtration rate was investigated. The influence of pH on the filtration parameters was also checked. The properties of selected membranes influencing the retention of pharmaceuticals and filtrate flux were analysed. An extensive analysis of the retention coefficients dependence on the contact angle and surface free energy was performed. It was found that there is a correlation between the hydrophilicity of the membrane and the effectiveness and efficiency of the membrane. As the contact angle of membrane increased, the flow rate of the filtrate stream increased, while the retention coefficient decreased. The studies showed that the best separation efficiency was achieved for compounds with a molecular weight (MW) greater than 300 g/mol. During the filtration of pharmaceuticals with MW ranging from 300 to 450 g/mol, the type of membrane used practically did not affect the filtration efficiency and a high degree of retention was achieved. In the case of low MW molecules (SA and ASA), a significant decrease in the separation efficiency during the process was noted.

13.
Bioprocess Biosyst Eng ; 34(3): 275-85, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20865283

RESUMO

The mathematical model of the integrated process of mercury contaminated wastewater bioremediation in a fixed-bed industrial bioreactor is presented. An activated carbon packing in the bioreactor plays the role of an adsorbent for ionic mercury and at the same time of a carrier material for immobilization of mercury-reducing bacteria. The model includes three basic stages of the bioremediation process: mass transfer in the liquid phase, adsorption of mercury onto activated carbon and ionic mercury bioreduction to Hg(0) by immobilized microorganisms. Model calculations were verified using experimental data obtained during the process of industrial wastewater bioremediation in the bioreactor of 1 m³ volume. It was found that the presented model reflects the properties of the real system quite well. Numerical simulation of the bioremediation process confirmed the experimentally observed positive effect of the integration of ionic mercury adsorption and bioreduction in one apparatus.


Assuntos
Biodegradação Ambiental , Reatores Biológicos/microbiologia , Mercúrio/toxicidade , Modelos Biológicos , Poluição Química da Água/prevenção & controle , Adsorção , Bactérias/enzimologia , Biomassa , Carbono/química , Cátions Bivalentes/química , Cátions Bivalentes/toxicidade , Indústrias/métodos , Cinética , Pseudomonas putida/enzimologia , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
14.
Bioprocess Biosyst Eng ; 34(6): 659-70, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21293881

RESUMO

In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that upon the calculations of normalized sensitivity coefficient (S(i,j)) 17 (steady-state) or 19 (dynamic conditions) kinetic and stoichiometric parameters are sensitive. Most of them are associated with growth and decay of ordinary heterotrophic organisms and phosphorus accumulating organisms. The rankings of ten most sensitive parameters established on the basis of the calculations of the mean square sensitivity measure (δ(msqr)j) indicate that irrespective of the fact, whether the steady-state or dynamic calibration was performed, there is an agreement in the sensitivity of parameters.


Assuntos
Modelos Químicos , Esgotos/análise , Software , Reatores Biológicos , Calibragem , Simulação por Computador , Cinética , Nitrogênio/análise , Oxigênio/análise , Fósforo/análise , Reprodutibilidade dos Testes , Eliminação de Resíduos Líquidos
15.
Water Environ Res ; 83(12): 2154-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22368957

RESUMO

Bisphenol A (BPA; 4-[2-(4-hydroxyphenyl)propan-2-yl]phenol) is a substance typically used in the plastic industry. It is used in the production of epoxy resins, polycarbonate, or fire retardants or as a stabilizer and an antioxidant in numerous types of plastics. Bisphenol A is introduced into the environment via municipal and industrial wastewater. Because of its hydrophobic properties, BPA has the potential for sorption on activated sludge during the biological wastewater treatment processes. This study investigated the degradation of BPA by means of UV-radiation and in the UV/H2O2 process with the presence and absence of hydrocarbonate ions (HCO3(-)) as hydroxyl radicals (OH*) scavengers. The calculated value of quantum yield was equal to 0.18, and the value of BPA rate constant with hydroxyl radicals was equal to 3.3 x 10(9) M(-1) s(-1).


Assuntos
Peróxido de Hidrogênio/química , Fenóis/química , Raios Ultravioleta , Compostos Benzidrílicos , Sequestradores de Radicais Livres/química , Radical Hidroxila/química , Espectrofotometria Ultravioleta
16.
Environ Technol ; 42(27): 4269-4278, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32255721

RESUMO

The purpose of this work was to determine the effect of initial pH on the production of volatile fatty acids (VFA) and hydrogen (H2) in the dark fermentation processes of kitchen waste. The study was conducted in batch bioreactors of working volume 1 L for different initial pH in the range from 5.5 to 9.0. The dark fermentation processes were carried out for 4 days at 37°C. Initial organic load of the kitchen waste in all bioreactors amounted to 25.5 gVS/L. Buffering of pH during the fermentation process was carried out with the use of ammonia contained mainly in digested sludge. The optimal conditions for the production of VFA and H2 were achieved at the initial pH of 8. Production of VFA and H2 in these conditions was, respectively, 13.9 g/L and 72.4 mL/gVS. The main produced components of VFA were acetic and butyric acids. The production of ethanol and lactic acid was at very low levels due to the high ratio of the volatile fatty acids to total organic content of 0.86. With the optimal initial pH of 8 the yield of CO2 production was 0.30 gC/gC. High initial pH value (above 8) extended the lag phase duration in the course of H2 production. The dominant groups of micro-organisms at the most favourable initial pH of 8 for the production of VFA and H2 were Bacteroidetes, Firmicutes, Spirochaetes and Waste Water of Evry 1 (WWE1) at the phylum level.


Assuntos
Ácidos Graxos Voláteis , Hidrogênio , Reatores Biológicos , Fermentação , Concentração de Íons de Hidrogênio
17.
Membranes (Basel) ; 12(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35054585

RESUMO

The research covered the process of nanofiltration of low molecular weight organic compounds in aqueous solution. The article presents the results of experiments on membrane filtration of compounds containing amino groups in the aromatic ring and comparing them with the results for compounds without amino groups. The research was carried out for several commercial polymer membranes: HL, TS40, TS80, DL from various manufacturers. It has been shown that the presence of the amino group and its position in relation to the carboxyl group in the molecule affects the retention in the nanofiltration process. The research also included the oxidation products of selected pharmaceuticals. It has been shown that 4-Amino-3,5-dichlorophenol-a oxidation product of diclofenac and 4-ethylbenzaldehyde-a oxidation product of IBU, show poor separation efficiency on the selected commercial membranes, regardless of the pH value and the presence of natural organic matter (NOM). It has been shown that pre-ozonation of natural river water can improve the retention of pollutants removed.

18.
Plants (Basel) ; 10(10)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34685910

RESUMO

Both low temperature and nitrogen starvation caused chlorosis of cyanobacteria. Here, in this study, for the first time, we compared the effects of low temperature, nitrogen starvation, and their combination on the photosynthesis and metabolites of a thermophilic cyanobacterium strain, Thermosynechococcus E542. Under various culture conditions, the growth rates, pigment contents, and chlorophyll fluorescence were monitored, and the composition of alkanes, lipidomes, and carbohydrates were determined. It was found that low temperature (35 °C) significantly suppressed the growth of Thermosynechococcus E542. Nitrogen starvation at 45 °C and 55 °C did not affect the growth; however, combined treatment of low temperature and nitrogen starvation led to the lowest growth rate and biomass productivity. Both low temperature and nitrogen starvation caused significantly declined contents of pigments, but they resulted in a different effect on the OJIP curves, and their combination led to the lowest pigment contents. The composition of fatty acids and alkanes was altered upon low-temperature cultivation, while nitrogen starvation caused reduced contents of all lipids. The low temperature did not affect carbohydrate contents, while nitrogen starvation greatly enhanced carbohydrate content, and their combination did not enhance carbohydrate content, but led to reduced productivity. These results revealed the influence of low temperature, nitrogen starvation, and their combined treatment for the accumulation of phycobiliproteins, lipids, and carbohydrates of a thermophilic cyanobacterium strain, Thermosynechococcus E542.

19.
Environ Technol ; 41(28): 3767-3777, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31084521

RESUMO

The aim of this study was to evaluate the effect of different inoculum ratio on the dark fermentation of kitchen waste in terms of volatile fatty acids (VFAs) and H2 production. The experiments were performed in batch bioreactors of effective volume 1 L without pH regulation. The ratio between the DS and KW was being increased from 0.11 to 0.51 on a volatile solids (VS) basis, while the initial content of KW was equal to 34.1 g VS/L. Increase of the DS/KW ratio from 0.11 to 0.28 resulted in the rise of VFAs and H2 production. Further increase in the amount of added DS did not cause a significant change in the production of VFAs and H2. In the bioreactor with the DS/KW ratio of 0.28, the production of VFAs and H2 was equal to 16.0 g/L and 68.1 mL/g VS, respectively. Acetic and butyric acids were produced in the largest amount and their content, for DS/KW ratio of 0.28, were equal 37% and 43%, respectively. At the ratio of DS/KW above 0.4, the caproic acid content attained the level of 25%. Based on the DS and KW microbiological analysis, it was observed that dominant bacteria were Bacteroidetes, Firmicutes, Proteobacteria, Spirochaetes and WWE1 at the phylum level.


Assuntos
Reatores Biológicos , Ácidos Graxos Voláteis , Anaerobiose , Fermentação , Concentração de Íons de Hidrogênio , Esgotos
20.
Bioresour Technol ; 313: 123700, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32590305

RESUMO

The effect of light colour and light regime on growth and production of the thermostable C-phycocyanin (PC) by the thermophilic cyanobacterium Synechococcus 6715 in the tubular photobioreactor has been analysed. The highest specific growth rate (1.918 d-1) and biomass concentration (5.11 gVS ⋅L-1) were observed under constant illumination of the red light. However, the PC concentration in volatile solids (e.g blue light 30.68 ± 0.8 mgPC⋅gVS-1 PP and 21.7 ± 1 mgPC⋅gVS-1 CI) as well as per photobioreactor unit volume (e.g red light 122.66 ± 2.28 mgPC⋅L-1 PP and 74.71 ± 8.43 mgPC⋅L-1 PP) was higher in the 16L:8D photoperiod. The obtained PC purity was higher in the case of photoperiod (≈1.5). PCC6715 lacks genes encoding phycoerythrins what suggests T1 type of pigmentation. Although changes in biomass pigmentation were not significant, the strain was able to adapt its photosystem what can be used in the optimization of PC production by application of different light colours.


Assuntos
Ficocianina , Synechococcus , Biomassa , Cor , Fotoperíodo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA