Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 623(7986): 324-328, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938708

RESUMO

The physicochemical properties of molecular crystals, such as solubility, stability, compactability, melting behaviour and bioavailability, depend on their crystal form1. In silico crystal form selection has recently come much closer to realization because of the development of accurate and affordable free-energy calculations2-4. Here we redefine the state of the art, primarily by improving the accuracy of free-energy calculations, constructing a reliable experimental benchmark for solid-solid free-energy differences, quantifying statistical errors for the computed free energies and placing both hydrate crystal structures of different stoichiometries and anhydrate crystal structures on the same energy landscape, with defined error bars, as a function of temperature and relative humidity. The calculated free energies have standard errors of 1-2 kJ mol-1 for industrially relevant compounds, and the method to place crystal structures with different hydrate stoichiometries on the same energy landscape can be extended to other multi-component systems, including solvates. These contributions reduce the gap between the needs of the experimentalist and the capabilities of modern computational tools, transforming crystal structure prediction into a more reliable and actionable procedure that can be used in combination with experimental evidence to direct crystal form selection and establish control5.

2.
Chemistry ; 30(33): e202400957, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608156

RESUMO

Herein we report the use of tetrakis (guanidinium) pyrenetetrasulfonate (G4PYR) and bis (guanidinium) 1,5-napthalene disulfonate (G2NDS) to catalyze the cyclization of 2-cyanobenzamide (1) to isoindolone (2). Moreover, we demonstrate the remarkable selectivity of these guanidinium organosulfonate hosts in encapsulating 2 over 1. By thoroughly investigating the intramolecular cyclization reaction, we determined that guanidinium and the organosulfonate moiety acts as the catalyst in this process. Additionally, 2 is selectively encapsulated, even in mixtures of other structurally similar heterocycles like indole. Furthermore, the tautomeric state of 2 (amino isoindolone (2-A) and imino isoindolinone forms (2-I)) can be controlled by utilizing different guanidinium organosulfonate frameworks.

3.
Angew Chem Int Ed Engl ; : e202406214, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825853

RESUMO

Crystal polymorphism, characterized by different packing arrangements of the same compound, strongly ties to the physical properties of a molecule. Determining the polymorphic landscape is complex and time-consuming, with the number of experimentally observed polymorphs varying widely from molecule to molecule. Furthermore, disappearing polymorphs, the phenomenon whereby experimentally observed forms cannot be reproduced, pose a significant challenge for the pharmaceutical industry. Herein, we focused on oxindole (OX), a small rigid molecule with four known polymorphs, including a reported disappearing form. Using crystal structure prediction (CSP), we assessed OX solid-state landscape and thermodynamic stability by comparing predicted structures with experimentally known forms. We then performed melt and solution crystallization in bulk and nanoconfinement to validate our predictions. These experiments successfully reproduced the known forms and led to the discovery of four novel polymorphs. Our approach provided insights into reconstructing disappearing polymorphs and building more comprehensive polymorph landscapes. These results also establish a new record of packing polymorphism for rigid molecules.

4.
Mol Pharm ; 20(7): 3380-3392, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37279175

RESUMO

Crystal structure prediction (CSP) is an invaluable tool in the pharmaceutical industry because it allows to predict all the possible crystalline solid forms of small-molecule active pharmaceutical ingredients. We have used a CSP-based cocrystal prediction method to rank ten potential cocrystal coformers by the energy of the cocrystallization reaction with an antiviral drug candidate, MK-8876, and a triol process intermediate, 2-ethynylglyclerol. For MK-8876, the CSP-based cocrystal prediction was performed retrospectively and successfully predicted the maleic acid cocrystal as the most likely cocrystal to be observed. The triol is known to form two different cocrystals with 1,4-diazabicyclo[2.2.2]octane (DABCO), but a larger solid form landscape was desired. CSP-based cocrystal screening predicted the triol-DABCO cocrystal as rank one, while a triol-l-proline cocrystal was predicted as rank two. Computational finite-temperature corrections enabled determination of relative crystallization propensities of the triol-DABCO cocrystals with different stoichiometries and prediction of the triol-l-proline polymorphs in the free-energy landscape. The triol-l-proline cocrystal was obtained during subsequent targeted cocrystallization experiments and was found to exhibit an improved melting point and deliquescence behavior over the triol-free acid, which could be considered as an alternative solid form in the synthesis of islatravir.


Assuntos
Química Farmacêutica , Estudos Retrospectivos , Cristalização
5.
Mol Pharm ; 19(7): 2133-2141, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35576503

RESUMO

Although the crystal structures of small-molecule compounds are often determined from single-crystal X-ray diffraction (scXRD), recent advances in three-dimensional electron diffraction (3DED) and crystal structure prediction (CSP) methods promise to expand the structure elucidation toolbox available to the crystallographer. Herein, a comparative assessment of scXRD, 3DED, and CSP in combination with powder X-ray diffraction is carried out on two former drug candidate compounds and a multicomponent crystal of a key building block in the synthesis of gefapixant citrate.


Assuntos
Pós , Cristalografia por Raios X , Pós/química , Difração de Raios X , Raios X
8.
ACS Mater Lett ; 6(5): 1906-1912, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38726044

RESUMO

Single crystal X-ray diffraction (SCXRD) is arguably the most definitive method for molecular structure determination, but it is often challenged by compounds that are liquids or oils at room temperature or do not form crystals adequate for analysis. Our laboratory previously reported a simple, cost-effective, single-step crystallization method based on guanidinium organosulfonate (GS) hydrogen bonded frameworks for structure determination of a wide range of encapsulated guest molecules, including assignment of the absolute configuration of chiral centers. Herein, we expand on those results and report a head-to-head comparison of the GS method with adamantoid "molecular chaperones", which have been reported to be useful hosts for structure determination. Inclusion compounds limited to only two GS hosts are characterized by low R1 values and Flack parameters, infrequent disorder of the host and guest, and manageable disorder when it does exist. The structures of some target molecules that were not included or resolved using the adamantoid chaperones were successfully included and resolved by the GS hosts, and vice versa. Of the 32 guests attempted by the GS method, 31 inclusion compounds afforded successful guest structure solutions, a 97% success rate. The GS hosts and adamantoid chaperones are complementary with respect to guest inclusion, arguing that both should be employed in the arsenal of methods for structure determination. Furthermore, the low cost of organosulfonate host components promises an accessible route to molecular structure determination for a wide range of users.

9.
Cryst Growth Des ; 24(8): 3483-3490, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659662

RESUMO

During the past three decades, the ability of guanidinium arenesulfonate host frameworks to encapsulate a wide range of guests has been amply demonstrated, with more than 700 inclusion compounds realized. Herein, we report crystalline inclusion compounds based on a new aliphatic host, guanidinium cyclohexanemonosulfonate, which surprisingly exhibits four heretofore unobserved architectures, as described by the projection topologies of the organosulfonate residues above and below hydrogen-bonded guanidinium sulfonate sheets. The inclusion compounds adopt a layer motif of guanidinium sulfonate sheets interleaved with guest molecules, resembling a mille-feuille pastry. The aliphatic character of this remarkably simple host, combined with access to greater architectural diversity and adaptability, enables the host framework to accommodate a wide range of guests and promises to expand the utility of guanidinium organosulfonate hosts.

10.
Acc Chem Res ; 42(5): 621-9, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19402623

RESUMO

Crystallization is vital to many processes occurring in nature and in the chemical, pharmaceutical, and food industries. Notably, crystallization is an attractive isolation step for manufacturing because this single process combines both particle formation and purification. Almost all of the products based on fine chemicals, such as dyes, explosives, and photographic materials, require crystallization in their manufacture, and more than 90% of all pharmaceutical products contain bioactive drug substances and excipients in the crystalline solid state. Hence control over the crystallization process allows manufacturers to obtain products with desired and reproducible properties. We judge the quality of a crystalline product based on four main properties: size, purity, morphology, and crystal structure. The pharmaceutical industry in particular requires production of the desired crystal form (polymorph) to assure the bioavailability and stability of the drug substance. In solution crystallization, nucleation plays a decisive role in determining the crystal structure and size distribution. Therefore, understanding the fundamentals of nucleation is crucial to achieve control over these properties. Because of its analytical simplicity, researchers have widely applied classical nucleation theory to solution crystallization. However, a number of differences between theoretical predictions and experimental results suggest that nucleation of solids from solution does not proceed via the classical pathway but follows more complex routes. In this Account, we discuss the shortcomings of classical nucleation theory and review studies contributing to the development of the modern two-step model. In the two-step model that was initially proposed for protein crystallization, a sufficient-sized cluster of solute molecules forms first, followed by reorganization of that cluster into an ordered structure. In recent experimental and theoretical studies, we and other researchers have demonstrated the applicability of the two-step mechanism to both macromolecules and small organic molecules, suggesting that this mechanism may underlie most crystallization processes from solutions. Because we have observed an increase in the organization time of appropriate lattice structures with greater molecular complexity, we propose that organization is the rate-determining step. Further development of a clearer picture of nucleation may help determine the optimum conditions necessary for the effective organization within the clusters. In addition, greater understanding of these processes may lead to the design of auxiliaries that can increase the rate of nucleation and avoid the formation of undesired solid forms, allowing researchers to obtain the final product in a timely and reproducible manner.


Assuntos
Cristais Líquidos/química , Modelos Químicos , Soluções , Termodinâmica
11.
Curr Opin Drug Discov Devel ; 10(6): 746-55, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17987526

RESUMO

Solution crystallization is an important separation and purification process used in the chemical, pharmaceutical and food industries. The quality of a crystalline product is generally judged by four main criteria: purity, crystal habit, particle size and solid form. Consistent production of the desired polymorph is crucial as the unanticipated emergence of a different crystal form may have severe consequences. Thus, the selection of a solid-state form for a crystalline product is vital and is ultimately based on knowledge of the properties of the other polymorphs. This review discusses the role of nucleation, crystal growth and molecular modeling on polymorphism in molecular crystals. Examples are presented demonstrating how the first two factors can govern the appearance of a particular crystalline form, and how the latter factor can be used as a tool for understanding polymorphism.


Assuntos
Modelos Moleculares , Preparações Farmacêuticas/química , Tecnologia Farmacêutica/métodos , Engenharia Química/métodos , Cristalização/métodos , Desenho de Fármacos , Conformação Molecular , Tamanho da Partícula
12.
Annu Rev Chem Biomol Eng ; 2: 259-80, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22432619

RESUMO

Polymorphism in molecular crystals is a prevalent phenomenon and is of great interest to the pharmaceutical community. The solid-state form is a key quality attribute of a crystalline product. Inconsistencies in the solid phase produced during the manufacturing and storage of drug substances and drug products may have severe consequences. It is essential to understand the solid-state behavior of the drug and to judiciously select the optimal solid form for development. This review highlights the pervasiveness and relevance of polymorphism and describes solid form screening and selection processes. Moreover, case studies on controlling polymorphs from a chemical development perspective are provided.


Assuntos
Cristalização , Estrutura Molecular , Preparações Farmacêuticas/química , Química Farmacêutica/métodos , Desenho de Fármacos , Tecnologia Farmacêutica/métodos
13.
J Pharm Sci ; 100(10): 4302-16, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21590691

RESUMO

Solid-state disorders of active pharmaceutical ingredients have been characterized by means of X-ray diffraction techniques and solid-state nuclear magnetic resonance spectroscopy. The results determined that the pleuromutilin-derivative, I, displays a unique continuous conformational disorder while retaining its long-range crystalline structure. The propionic acid (PA) version of this compound displayed partial crystalline order and site disorder of PA, depending on the quantity of PA incorporated in the structure. Thus, I is a unique example of one-phase crystalline-amorphous model. Physical and chemical stability data was acquired on these disordered systems and discussed in relation with the characterized disorder present in the crystal systems. Analysis of the results showed that in contrast to phase-separated amorphous, restrained disorders do not influence the stability.


Assuntos
Propionatos/química , Tartaratos/química , Química Farmacêutica , Cristalização , Cristalografia por Raios X , Diterpenos/química , Estabilidade de Medicamentos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Estrutura Molecular , Compostos Policíclicos , Difração de Pó , Tecnologia Farmacêutica/métodos , Pleuromutilinas
14.
Pharm Res ; 25(4): 960-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17896099

RESUMO

PURPOSE: The aim of this paper is to demonstrate that multiple crystal forms can be generated on patterned self-assembled monolayers (SAMs) substrates in single experiments in a given solvent system. METHODS: Functionalized metallic islands are fabricated and utilized as individual templates for crystal formation. Taking advantage of the different wetting properties that patterned surfaces offered, arrays of small solution droplets on the nano- and pico- liter scale were produced on the substrates. Different droplet dimensions were deposited on the substrate. As the solvent evaporates from the droplets, crystals were formed within the constrained volume. Crystal habits were examined with optical microscopy while the solid form was identified with Raman microscopy. RESULTS: With mefenamic acid (MA) and sulfathiazole as model pharmaceutical compounds, two and four different polymorphs, respectively, were observed under identical conditions. Moreover, it is established that the polymorphic distribution is highly dependent on the solvent evaporation rate and the solution concentration. These results imply that multiple crystal forms competitively nucleate in solution, and the probability of each form nucleating is strongly dependent on the supersaturation of the solution. Additionally, solvent was observed to play a role in controlling the solid state outcome. CONCLUSIONS: Multiple crystal forms can concomitantly nucleate on patterned substrates. This technique can particularly be attractive to screen for polymorphs as elusive, metastable solid forms are favored with the creation of high supersaturation and can be stabilized due to the minimal volumes generated.


Assuntos
Ácido Mefenâmico/química , Sulfatiazóis/química , Cristalização , Estabilidade de Medicamentos , Desenho de Equipamento , Ouro/química , Nanotecnologia , Solventes/química , Análise Espectral Raman , Sulfatiazol , Tecnologia Farmacêutica/instrumentação , Tecnologia Farmacêutica/métodos , Volatilização
15.
J Am Chem Soc ; 127(43): 14982-3, 2005 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-16248610

RESUMO

Patterned glycine crystals nucleated on functionalized metallic square islands. This approach can be used to fabricate particles with micron dimensions and screen solid forms under different conditions. The size of the glycine crystals is controlled by the dimensions of the islands. High energy metastable beta-glycine crystallizes on small metallic islands, whereas for large islands, the polymorphic outcome becomes biased toward the alpha-form.


Assuntos
Cristalização , Glicina/química , Ouro/química , Tamanho da Partícula , Soluções/química , Análise Espectral Raman
16.
Langmuir ; 20(13): 5353-7, 2004 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-15986673

RESUMO

The interactions of antifreeze protein (AFP) type I, antifreeze glycoproteins, polyvinyl pyrrolidone (PVP), and various amino acids with ice are investigated using Cerius2, a molecular modelling tool. Binding energies of these additives to a major ice crystal face {001} are computed. Binding energy comparison of threonine molecules (by themselves) and as threonine residues within AFP type I demonstrate their role in improving AFP's binding ability to the ice crystal face. The shifts in onset points of ice crystallization with AFP type I, PVP, and amino acids are measured using differential scanning calorimetry. These values when correlated with their respective binding energies reveal a direct proportionality and demonstrate AFP's effectiveness in inhibiting growth and nucleation of ice, over amino acids.


Assuntos
Proteínas Anticongelantes/química , Gelo , Varredura Diferencial de Calorimetria , Computadores , Cristalização , Modelos Moleculares , Povidona/química , Isoformas de Proteínas/química , Estrutura Terciária de Proteína , Propriedades de Superfície , Temperatura , Treonina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA