Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(51): e202208158, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36302076

RESUMO

Realization of practical sodium metal batteries (SMBs) is hindered due to lack of compatible electrolyte components, dendrite propagation, and poor understanding of anodic interphasial chemistries. Chemically robust liquid electrolytes that facilitate both favorable sodium metal deposition and a stable solid-electrolyte interphase (SEI) are ideal to enable sodium metal and anode-free cells. Herein we present advanced characterization of a novel fluorine-free electrolyte utilizing the [HCB11 H11 ]1- anion. Symmetrical Na cells operated with this electrolyte exhibit a remarkably low overpotential of 0.032 V at a current density of 2.0 mA cm-2 and a high coulombic efficiency of 99.5 % in half-cell configurations. Surface characterization of electrodes post-operation reveals the absence of dendritic sodium nucleation and a surprisingly stable fluorine-free SEI. Furthermore, weak ion-pairing is identified as key towards the successful development of fluorine-free sodium electrolytes.

2.
Adv Sci (Weinh) ; : e2409662, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39418091

RESUMO

In pursuit of the highest possible energy density, researchers shift their focus to the ultimate anode material, lithium metal (Li0), and high-capacity cathode materials with high nickel content (Ni > 80%). The combination of these aggressive electrodes presents unprecedented challenges to the electrolyte. Here, we report a hybrid electrolyte consisting of a highly fluorinated ionic liquid and a weakly solvating fluorinated ether, whose hybridization structure enables the reversible operation of a battery chemistry based on Li0 and LiNiO2 (Ni = 100%), delivering nearly theoretical capacity of the latter (up to 249 mAh g-1) for >300 cycles with retention of 78.6% and in absence of unwanted morphological changes in both electrodes. Extensive characterization assisted by molecular dynamic simulation and density functional theory calculations reveals the function of the fluorinated ether to be far more profound than simple dilution and viscosity reduction. Instead, it induces drastic changes in Li+-solvation environment, the consequence of which engenders simultaneous stabilization of electrode/electrolyte and interfacing via formation of respective interfacial chemistries. This study further unlocks fundamental knowledge underneath the prevailing "diluent strategy" that is extensively applied by the electrolyte researchers and opens more design space for the next-generation electrolytes and interphases for these coveted battery chemistries.

3.
ACS Appl Mater Interfaces ; 16(42): 57151-57161, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39387719

RESUMO

Metal fluorides (e.g., FeF2 and FeF3) have received attention as conversion-type cathode materials for Li-ion batteries due to their higher theoretical capacity compared to that of common intercalation materials. However, their practical use has been hindered by low round-trip efficiency, voltage hysteresis, and capacity fading. Cation substitution has been proposed to address these challenges, and recent advancements in battery performance involve the introduction of entropy stabilization in an attempt to facilitate reversible conversion reactions by increasing configurational entropy. Building on this concept, high entropy fluorides with five cations were synthesized by using a simple mechanochemical route. In order to examine the impact of element selection, Co0.2Cu0.2Ni0.2Zn0.2Fe0.2F2 (HEF-Fe) was compared with Co0.2Cu0.2Ni0.2Zn0.2Mg0.2F2 (HEF-Mg), replacing electrochemically inactive Mg with Fe as an active participant in the conversion reaction. Combining electrochemical measurements with first-principles calculations, high-resolution electron microscopy, and synchrotron X-ray analysis, HEFs' battery performances and conversion reaction mechanisms were investigated in detail. The results highlighted that replacement of Mg with Fe was beneficial, with enhanced capacity, rate capability, and surface stability. In addition, it was found that HEF-Fe showed similar cycle stability without an electrochemically inactive element. These findings provide valuable insights for the design of high entropy multielement fluorides for improved Li-ion battery performance.

4.
Front Chem ; 11: 1161053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153528

RESUMO

Single-phase three-dimensional vanadium oxide (V4O9) was synthesized by reduction of V2O5 using a gas stream of ammonia/argon (NH3/Ar). The as-synthesized oxide, prepared by this simple gas reduction method was subsequently electrochemically transformed into a disordered rock salt type-"Li3.7V4O9" phase while cycling over the voltage window 3.5 to 1.8 V versus Li. The Li-deficient phase delivers an initial reversible capacity of ∼260 mAhg-1 at an average voltage of 2.5 V vs. Li+/Li0. Further cycling to 50 cycles yields a steady 225 mAhg-1. Ex situ X-ray diffraction studies confirmed that (de) intercalation phenomena follows a solid-solution electrochemical reaction mechanism. As demonstrated, the reversibility and capacity utilization of this V4O9 is found to be superior to battery grade, micron-sized V2O5 cathodes in lithium cells.

5.
ACS Appl Mater Interfaces ; 15(32): 38454-38462, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37527915

RESUMO

Developing stable cathode materials that are resistant to storage degradation is essential for practical development and industrial processing of Na-ion batteries as many sodium layered oxide materials are susceptible to hygroscopicity and instability upon exposure to ambient air. Among the various layered compounds, Fe-substituted O3-type Na(Ni1/2Mn1/2)1-xFexO2 materials have emerged as a promising option for high-performance and low-cost cathodes. While previous reports have noted the decent air-storage stability of these materials, the role and origin of Fe substitution in improving storage stability remain unclear. In this study, we investigate the air-resistant effect of Fe substitution in O3-Na(Ni1/2Mn1/2)1-xFexO2 cathode materials by performing systematic surface and structural characterizations. We find that the improved storage stability can be attributed to the multifunctional effect of Fe substitution, which forms a surface protective layer containing an Fe-incorporated spinel phase and decreases the thermodynamical driving force for bulk chemical sodium extraction. With these mechanisms, Fe-containing cathodes can suppress the cascades of cathode degradation processes and better retain the electrochemical performance after air storage.

6.
Adv Mater ; 35(21): e2300673, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929566

RESUMO

Sulfide-based solid-state electrolytes (SSEs) exhibit many tantalizing properties including high ionic conductivity and favorable mechanical properties for next-generation solid-state batteries. Widespread adoption of these materials is hindered by their intrinsic instability under ambient conditions, which makes them difficult to process at scale, and instability at the Li||SSE and cathode||SSE interfaces, which limits cell performance and lifetime. Atomic layer deposition is leveraged to grow thin Al2 O3 coatings on Li6 PS5 Cl powders to address both issues simultaneously. These coatings can be directly grown onto Li6 PS5 Cl particles with negligible chemical modification of the underlying material and enable exposure of powders to pure and H2 O-saturated oxygen environments for ≥4 h with minimal reactivity, compared with significant degradation of the uncoated powder. Pellets fabricated from coated powders exhibit ionic conductivities up to 2× higher than those made from uncoated material, with a simultaneous decrease in electronic conductivity and significant suppression of chemical reactivity at the Li-SSE interface. These benefits result in significantly improved room temperature cycle life at high capacity and current density. It is hypothesized that this enhanced performance derives from improved intergranular properties and improved Li metal adhesion. This work points to a completely new framework for designing active, stable, and scalable materials for next-generation solid-state batteries.

7.
ACS Appl Mater Interfaces ; 13(23): 26915-26923, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33908776

RESUMO

Flame-spray-pyrolysis (FSP) is a robust and scalable process to synthesize particles at the commodity-scale. FSP has been used to produce the precursor powders which were converted to the layered structure (R3̅m phase) by a postannealing step in making nickel-rich cathode materials (NCMs). Theoretically, the high flame temperature (normally >1500 K) in FSP can provide adequate energy for the phase conversion from rock-salt to layered structures and potentially enables one-step synthesis. However, the high flame temperature is a critical issue to cause lithium loss and structural degradation, preventing the formation of the layered phase. In this work, guided by the gaseous nucleation theory, we implemented several FSP processes with different solution recipes. The layered phase concentration in the as-burned products can be increased with the solution enthalpies. By adding a rapid quench step to suppress the lithium loss and phase degradation, the layered phase can be further increased. This work contributes new ideas to innovating process regarding the process efficiency and throughput of manufacturing cathode materials at a large scale.

8.
Chem Commun (Camb) ; 57(84): 11009-11012, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34558581

RESUMO

A novel LiMn0.5Ni0.5O2 cathode with a predominant, partially-disordered lithiated-spinel structure has been prepared by a 'low temperature' (LT) synthesis. Li/LT-LiMn0.5Ni0.5O2 cells operate between 5.0 and 2.5 V with good cycling stability, yielding a capacity of 225 mA h g-1, principally by redox reactions on the nickel ions on distinct voltage plateaus at ∼3.6 V and ∼4.6 V.

9.
Chem Mater ; 33(12): 4445-4455, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34276133

RESUMO

P2-structured Na0.67Ni0.33Mn0.67O2 (PNNMO) is a promising Na-ion battery cathode material, but its rapid capacity decay during cycling remains a hurdle. Li doping in layered transition-metal oxide (TMO) cathode materials is known to enhance their electrochemical properties. Nevertheless, the influence of Li at different locations in the structure has not been investigated. Here, the crystallographic role and electrochemical impact of lithium on different sites in PNNMO is investigated in Li x Na0.67-y Ni0.33Mn0.67O2+δ (0.00 ≤ x ≤ 0.2, y = 0, 0.1). Lithium occupancy on prismatic Na sites is promoted in Na-deficient (Na < 0.67) PNNMO, evidenced by ex situ and operando synchrotron X-ray diffraction, X-ray absorption spectroscopy, and 7Li solid-state nuclear magnetic resonance. Partial substitution of Na with Li leads to enhanced stability and slightly increased specific capacity compared to PNNMO. In contrast, when lithium is located primarily on octahedral TM sites, capacity is increased but at the cost of stability.

10.
ACS Appl Mater Interfaces ; 12(46): 51397-51408, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33141552

RESUMO

Layered NaNixFeyMnzO2 cathode (NFM) is of great interest in sodium ion batteries because of its high theoretical capacity and utilization of abundant, low-cost, environmentally friendly raw materials. Nevertheless, there remains insufficient understanding on the concurrent local environment evolution in each transition metal (TM) that largely influences the reversibility of the cathode materials upon cycling. In this work, we investigate the reversibility of TM ions in layered NFMs with varying Fe contents and potential windows. Utilizing ex situ synchrotron X-ray absorption near-edge spectroscopy and extended X-ray absorption fine structure of precycled samples, the valence and bonding evolution of the TMs are elucidated. It is found that Mn is electrochemically inactive, as indicated by the insignificant change of Mn valence and the Mn-O bonding distance. Fe is electrochemically inactive after the first five cycles. The Ni redox couple contributes most of the charge compensation for NFMs. Ni redox is quite reversible in the cathodes with less Fe content. However, the Ni redox couple shows significant irreversibility with a high Fe content of 0.8. The electrochemical reversibility of the NFM cathode becomes increasingly enhanced with the decrease of either Fe content or with lower upper charge cutoff potential.

11.
Nat Commun ; 10(1): 1692, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979874

RESUMO

Crystalline defects are commonly generated in lithium-metal-oxide electrodes during cycling of lithium-ion batteries. Their role in electrochemical reactions is not yet fully understood because, until recently, there has not been an effective operando technique to image dynamic processes at the atomic level. In this study, two types of defects were monitored dynamically during delithiation and concomitant oxidation of oxygen ions by using in situ high-resolution transmission electron microscopy supported by density functional theory calculations. One stacking fault with a fault vector b/6[110] and low mobility contributes minimally to oxygen release from the structure. In contrast, dissociated dislocations with Burgers vector of c/2[001] have high gliding and transverse mobility; they lead to the formation, transport and release subsequently of oxygen related species at the surface of the electrode particles. This work advances the scientific understanding of how oxygen participates and the structural response during the activation process at high potentials.

12.
J Phys Chem Lett ; 10(4): 806-812, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30615467

RESUMO

Harnessing oxygen redox reactions is an intriguing route to increasing capacity in Li-ion batteries (LIBs). Despite numerous experimental and theoretical attempts to unravel the mechanism of oxygen redox behavior, the electronic origin of oxygen activities in energy storage of Li-rich LIB materials remains under intense debate. In this work, the onset of oxygen activity was examined using a Li-rich material that has been reported to exhibit oxygen redox, namely, Li5FeO4. By comparing experimental measurements and first-principles Bethe-Salpeter equation calculations of oxygen K-edge X-ray absorption spectra (XAS), it was found that experimentally-observed changes in XAS originate from the nonbonding oxygen states in cation-disordered delithiated Li5FeO4, and the spectral features of oxygen dimers were also determined. This combined experimental and theoretical study offers an effective approach to disentangle the intertwined signals in XAS and can be further utilized in broader contexts for characterizing other energy storage and conversion materials.

13.
Nat Commun ; 10(1): 4946, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666508

RESUMO

Due to their exceptional high energy density, lithium-ion batteries are of central importance in many modern electrical devices. A serious limitation, however, is the slow charging rate used to obtain the full capacity. Thus far, there have been no ways to increase the charging rate without losses in energy density and electrochemical performance. Here we show that the charging rate of a cathode can be dramatically increased via interaction with white light. We find that a direct exposure of light to an operating LiMn2O4 cathode during charging leads to a remarkable lowering of the battery charging time by a factor of two or more. This enhancement is enabled by the induction of a microsecond long-lived charge separated state, consisting of Mn4+ (hole) plus electron. This results in more oxidized metal centers and ejected lithium ions are created under light and with voltage bias. We anticipate that this discovery could pave the way to the development of new fast recharging battery technologies.

14.
ACS Appl Mater Interfaces ; 10(16): 13479-13490, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29616800

RESUMO

Embedding a lithiated cobalt oxide spinel (Li2Co2O4, or LiCoO2) component or a nickel-substituted LiCo1- xNi xO2 analogue in structurally integrated cathodes such as xLi2MnO3·(1- x)LiM'O2 (M' = Ni/Co/Mn) has been recently proposed as an approach to advance the performance of lithium-ion batteries. Here, we first revisit the phase stability and electrochemical performance of LiCoO2 synthesized at different temperatures using density functional theory calculations. Consistent with previous studies, we find that the occurrence of low- and high-temperature structures (i.e., cubic lithiated spinel LT-LiCoO2; or Li2Co2O4 ( Fd3̅ m) vs trigonal-layered HT-LiCoO2 ( R3̅ m), respectively) can be explained by a small difference in the free energy between these two compounds. Additionally, the observed voltage profile of a Li/LiCoO2 cell for both cubic and trigonal phases of LiCoO2, as well as the migration barrier for lithium diffusion from an octahedral (Oh) site to a tetrahedral site (Td) in Fd3̅ m LT-Li1- xCoO2, has been calculated to help understand the complex electrochemical charge/discharge processes. A search of LiCo xM1- xO2 lithiated spinel (M = Ni or Mn) structures and compositions is conducted to extend the exploration of the chemical space of Li-Co-Mn-Ni-O electrode materials. We predict a new lithiated spinel material, LiNi0.8125Co0.1875O2 ( Fd3̅ m), with a composition close to that of commercial, layered LiNi0.8Co0.15Al0.05O2, which may have the potential for exploitation in structurally integrated, layered spinel cathodes for next-generation lithium-ion batteries.

15.
ACS Appl Mater Interfaces ; 9(12): 10618-10625, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28277643

RESUMO

Sodium-ion batteries are now close to replacing lithium-ion batteries because they provide superior alternative energy storage solutions that are in great demand, particularly for large-scale applications. To that end, the present study is focused on the properties of a new type of dual-electrode material, Na0.5Ni0.25Mn0.75O2, synthesized using a mixed hydroxy-carbonate route. Cyclic voltammetry confirms that redox couples, at high and low voltage ranges, are facilitated by the unique features and properties of this dual-electrode, through sodium ion deintercalation/intercalation into the layered Na0.5Ni0.25Mn0.75O2 material. This material provides superior performance for Na-ion batteries, as evidenced by the fabricated sodium cell that yielded initial charge-discharge capacities of 125/218 mAh g-1 in the voltage range of 1.5-4.4 V at 0.5 C. At a low voltage range (1.5-2.6 V), the anode cell delivered discharge-charge capacities of 100/99 mAh g-1 with 99% capacity retention, which corresponds to highly reversible redox reaction of the Mn4+/3+ reduction and the Mn3+/4+ oxidation observed at 1.85 and 2.06 V, respectively. The symmetric Na-ion cell, fabricated using Na0.5Ni0.25Mn0.75O2, yielded initial charge-discharge capacities of 196/187 µAh at 107 µA. These results encourage the further development of new types of futuristic sodium-ion-battery-based energy storage systems.

16.
ACS Appl Mater Interfaces ; 8(41): 27720-27729, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27700026

RESUMO

Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3·(1-x)LiMO2 (M = Ni, Mn, or Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to that of manganese and nickel ions in close-packed oxides and (2) their higher potential (∼3.6 V vs Li0) relative to manganese oxide spinels (∼2.9 V vs Li0) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we revisited the structural and electrochemical properties of lithiated spinels in the LiCo1-xNixO2 (0 ≤ x ≤ 0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1-xNixO2 structures when prepared in air between 400 and 800 °C and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentrations, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells.

17.
Biomaterials ; 26(18): 3843-51, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15626432

RESUMO

In this report, a series of fluoridated apatite coatings were obtained by the electron-beam deposition method. The fluoridation of the apatite was aimed to improve the stability of the coating and elicit the fluorine effect, which is useful in the dental restoration area. Apatites fluoridated at different levels were used as initial evaporants for the coatings. The as-deposited coatings were amorphous, but after heat treatment at 500 degrees C for 1 h, the coatings crystallized well to an apatite phase without forming any cracks. The adhesion strengths of the as-deposited coatings were about 40 MPa. After heat treatment at 500 degrees C, the strengths of the pure HA and FA coatings decreased to about 20 MPa, however, the partially fluoridated coatings maintained their initial strength. The dissolution rate of the fluoridated coatings was lower than that of the pure HA coating, and the rate was the lowest in the coatings with 25% and 50% fluorine substitutions. The osteoblast-like cells responded to the coatings in a similar manner to the dissolution behavior. The cells on the fluoridated coatings showed a lower (p < 0.05) proliferation level compared to those on the pure HA coating. The alkaline phosphatase activity of the cells was slightly lower than that on the pure HA coating, but this difference was not statistically significant.


Assuntos
Líquidos Corporais/química , Materiais Revestidos Biocompatíveis/química , Cristalização/métodos , Hidroxiapatitas/química , Osteossarcoma/patologia , Osteossarcoma/fisiopatologia , Titânio/química , Implantes Absorvíveis , Adesividade , Adesão Celular , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Tamanho Celular , Materiais Revestidos Biocompatíveis/análise , Elétrons , Dureza , Temperatura Alta , Humanos , Hidroxiapatitas/análise , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA