Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Cell Biol ; 8(12): 1327-36, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17128265

RESUMO

The mechanisms by which commensal bacteria suppress inflammatory signalling in the gut are still unclear. Here, we present a cellular mechanism whereby the polarity of intestinal epithelial cells (IECs) has a major role in colonic homeostasis. TLR9 activation through apical and basolateral surface domains have distinct transcriptional responses, evident by NF-kappaB activation and cDNA microarray analysis. Whereas basolateral TLR9 signals IkappaBalpha degradation and activation of the NF-kappaB pathway, apical TLR9 stimulation invokes a unique response in which ubiquitinated IkappaB accumulates in the cytoplasm preventing NF-kappaB activation. Furthermore, apical TLR9 stimulation confers intracellular tolerance to subsequent TLR challenges. IECs in TLR9-deficient mice, when compared with wild-type and TLR2-deficient mice, display a lower NF-kappaB activation threshold and these mice are highly susceptible to experimental colitis. Our data provide a case for organ-specific innate immunity in which TLR expression in polarized IECs has uniquely evolved to maintain colonic homeostasis and regulate tolerance and inflammation.


Assuntos
Polaridade Celular , Colo/citologia , Enterócitos/citologia , Homeostase , Transdução de Sinais , Receptor Toll-Like 9/metabolismo , Animais , Células CACO-2 , Cloroquina/farmacologia , Colo/efeitos dos fármacos , Colo/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Tolerância Imunológica/efeitos dos fármacos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor Toll-Like 9/química
2.
Explore (NY) ; 19(1): 141-146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34911662

RESUMO

RATIONALE: Metoclopramide is commonly used to treat nausea and vomiting. However, long-term administration of metoclopramide is associated with various adverse effects, and its therapeutic effects are short-lasting. Hence, traditional East Asian medicine has received increasing attention as a short-term strategy for treating these symptoms. PATIENT CONCERNS: The present report discusses the cases of a 71-year-old man and an 80-year-old woman diagnosed with cerebellar infarction. Both patients reported nausea and vomiting, which appeared during hospitalization following cerebellar infarction. DIAGNOSES: One patient was diagnosed with a left cerebellar infarction and hemorrhagic transformation, while the other was diagnosed with a bilateral cerebellar infarction. INTERVENTIONS: Both patients took Banhabaekchulcheonma-tang (BT) and Oryeong-san (OS) extracts. OUTCOMES: The patient in Case 1 experienced a rapid decrease in nausea from day 5 of BT and OS administration, and metoclopramide was discontinued on day 7. The patient in Case 2 experienced a clear decrease in the number of vomiting episodes from day 6 of BT and OS administration and did not take metoclopramide thereafter. LESSONS: Other than drugs used to mitigate symptoms, there are no suitable treatments available for nausea and vomiting caused by cerebellar infarction. In the present cases, nausea and vomiting remained unresolved even after 3 weeks of treatment with conventional therapies; however, these symptoms significantly improved after administration of the traditional East Asian herbal medicines BT and OS, and there were no recurrences. These cases demonstrate that traditional herbal medicine can reduce the side effects associated with long-term administration of metoclopramide and help patients resume their daily lifestyle. In addition, BT and OS treatment can facilitate administration of other drugs, highlighting its potential to aid in the treatment of stroke. Further research including relevant clinical trials is required to obtain more conclusive evidence.


Assuntos
Antieméticos , Masculino , Feminino , Humanos , Idoso de 80 Anos ou mais , Idoso , Antieméticos/uso terapêutico , Metoclopramida/uso terapêutico , Vômito/tratamento farmacológico , Vômito/induzido quimicamente , Náusea/etiologia , Náusea/induzido quimicamente , Extratos Vegetais/uso terapêutico , Infarto/induzido quimicamente , Infarto/complicações , Infarto/tratamento farmacológico
3.
Front Immunol ; 13: 912898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874687

RESUMO

Two years into the COVID-19 pandemic there is still a need for vaccines to effectively control the spread of novel SARS-CoV-2 variants and associated cases of severe disease. Here we report a messenger RNA vaccine directly encoding for a nanoparticle displaying 60 receptor binding domains (RBDs) of SARS-CoV-2 that acts as a highly effective antigen. A construct encoding the RBD of the Delta variant elicits robust neutralizing antibody response, and also provides protective immunity against the Delta variant in a widely used transgenic mouse model. We ultimately find that the proposed mRNA RBD nanoparticle-based vaccine provides a flexible platform for rapid development and will likely be of great value in combatting current and future SARS-CoV-2 variants of concern.


Assuntos
COVID-19 , Nanopartículas , Vacinas de mRNA , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Nanopartículas/química , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Vacinas de mRNA/imunologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-34539808

RESUMO

The Governing Vessel 14 (GV14) (Dazhui) is one of the acupuncture points referred to as "seven acupoints for stroke." Nevertheless, there is a scarcity of research on the effects of acupuncture treatment at GV14. This study investigated the effects of acupuncture at GV14 on cerebral blood flow (CBF), especially that in the basilar artery (BA) and the middle cerebral arteries (MCA). Sixteen healthy men aged 20 to 29 years were enrolled in this study. CBF velocity and cerebrovascular reactivity (CVR) were measured using transcranial Doppler sonography (TCD). The following were assessed: closed circuit rebreathing- (CCR-) induced carbon dioxide (CO2) reactivity, modified blood flow velocity at 40 mmHg (CV40) on BA and MCAs, blood pressure (BP), and heart rate (HR). Observed results were obtained after comparison with the baseline evaluation. Statistically significant elevations in CO2 reactivity were recorded in the BA (3.28 to 4.70, p < 0.001) and MCAs (right: 3.81 to 5.25, p=0.001; left: 3.84 to 5.12, p=0.005) after acupuncture at GV14. The CV40 increased statistically significantly only in the BA (45.49 to 50.41, p=0.003). No change was observed in BP (106.83 to 107.08 (mmHg), p=0.335) and HR (77 to 75 (bpm), p=0.431). Acupuncture at GV14 improved CBF velocity. These results could be explained by the regulation of endothelium-dependent vessel dilation effected by acupuncture. This trial is registered with Korean Clinical Trial Registry (http://cris.nih.go.kr; registration number: KCT0004787).

5.
Circ Res ; 95(7): 684-91, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15345653

RESUMO

Innate immune system activation is associated with atherosclerotic lesion development. The specific sites of lesion development are believed to be defined by the shear stress of blood flow. Consequently, we investigated the responsiveness of human coronary artery endothelial cells (HCAECs) to Toll-like receptor (TLR) 2 and 4 agonists in an in vitro model of chronic laminar flow. HCAECs under chronic laminar flow were found to be normally responsive to lipopolysaccharide (and tumor necrosis factor) in terms of E-selectin expression but were found to be hyporesponsive to stimulation with the specific TLR2 ligands macrophage activating lipopeptide-2, PAM2-Cys, and Lip19; this was observed to be attributable to downregulation of TLR2 transcription and protein expression. We found that laminar flow induced SP1 serine phosphorylation by protein kinase CK2 and thereby blocked SP1 binding to the TLR2 promoter, which is required for TLR2 expression. This regulatory mechanism also blocked lipopolysaccharide- and tumor necrosis factor-induced TLR2 upregulation in HCAECs and could be important for suppression of other flow-sensitive endothelial proteins. These results extend the role of flow in controlling endothelial responsiveness. Given the current evidence that TLRs are proatherogenic, flow suppression of TLR2 expression may be atheroprotective.


Assuntos
Arteriosclerose/fisiopatologia , Vasos Coronários/metabolismo , Endotélio Vascular/citologia , Regulação da Expressão Gênica/fisiologia , Hemorreologia , Glicoproteínas de Membrana/biossíntese , Receptores de Superfície Celular/biossíntese , Fator de Transcrição Sp1/antagonistas & inibidores , Proteínas de Transporte/farmacologia , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/fisiologia , Células Cultivadas/metabolismo , Vasos Coronários/citologia , Vasos Coronários/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Humanos , Lipopeptídeos , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/genética , Oligopeptídeos/farmacologia , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Superfície Celular/genética , Proteínas Recombinantes/farmacologia , Fator de Transcrição Sp1/fisiologia , Fator de Transcrição Sp3 , Estresse Mecânico , Receptor 2 Toll-Like , Receptores Toll-Like , Fatores de Transcrição/metabolismo , Triazóis/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
6.
FASEB J ; 18(10): 1117-9, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15132988

RESUMO

Endothelial cells are activated by microbial agonists through Toll-like receptors (TLRs) to express inflammatory mediators; this is of significance in acute as well as chronic inflammatory states such as septic shock and atherosclerosis, respectively. We investigated mechanisms of lipopolysaccharide (LPS)-induced cell activation in human coronary artery endothelial cells (HCAEC) using a combination of FACS, confocal microscopy, RT-PCR, and functional assays. We found that TLR4, in contrast to TLR2, is not only located intracellularly but also functions intracellularly. That being the case, internalization of LPS is required for activation. We further characterized the HCAEC LPS uptake system and found that HCAEC exhibit an effective LPS uptake only in the presence of LPS binding protein (LBP). In addition to its function as a catalyst for LPS-CD14 complex formation, LBP enables HCAEC activation at low LPS concentrations by facilitating the uptake, and therefore delivery, of LPS-CD14 complexes to intracellular TLR4-MD-2. LBP-dependent uptake involves a scavenger receptor pathway. Our findings may be of pathophysiological relevance in the initial response of the organism to infection. Results further suggest that LBP levels, which vary as LBP is an acute phase reactant, could be relevant to initiating inflammatory responses in the vasculature in response to chronic or recurring low LPS.


Assuntos
Vasos Coronários/citologia , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/citologia , Líquido Intracelular/metabolismo , Lipídeo A/análogos & derivados , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/fisiologia , Receptores de Superfície Celular/fisiologia , Proteínas de Fase Aguda/fisiologia , Reação de Fase Aguda , Adulto , Animais , Antígenos de Neoplasias/biossíntese , Antígenos de Neoplasias/genética , Antígenos de Superfície/biossíntese , Antígenos de Superfície/genética , Proteínas de Transporte/fisiologia , Compartimento Celular , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Citometria de Fluxo , Glicolipídeos/farmacologia , Humanos , Lipídeo A/farmacologia , Antígeno 96 de Linfócito , Substâncias Macromoleculares , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Monócitos/ultraestrutura , RNA Mensageiro/biossíntese , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética , Receptores Imunológicos/fisiologia , Receptores Depuradores , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Receptores Toll-Like , Veias Umbilicais/citologia
7.
Mol Pharmacol ; 72(4): 868-75, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17615244

RESUMO

We describe a successful application of beta-lactamase fragment complementation to high-throughput screening (HTS) for Toll-like receptor 4 (TLR4) signaling inhibitors. We developed a stable cell line, HeLa/CL3-4, expressing MyD88/Bla(a) and TLR4/Bla(b), in which the two beta-lactamase fragments complement with each other by virtue of spontaneous MyD88-TLR4 binding via their Toll/IL-1R (TIR) domains. Inhibition of the MyD88-TLR4 binding leads to the disruption of the enzyme complementation and a loss of the lactamase activity. We used a 384-well plate format to screen 16,000 compounds using this assay and obtained 45 primary hits. After rescreening these 45 hits and eliminating compounds that directly inhibited beta-lactamase, we had five candidate inhibitors. We show that these five act as inhibitors of TLR4-MyD88 binding and are variously effective at inhibiting lipopolysaccharide-stimulated cytokine release from RAW264.7 cells. One compound is effective near 100 nM. None of the compounds showed any cytotoxicity at 20 microM.


Assuntos
Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , beta-Lactamases/metabolismo , Animais , Western Blotting , Linhagem Celular , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoprecipitação , Camundongos , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Ligação Proteica , Receptor 4 Toll-Like/antagonistas & inibidores
8.
Immunity ; 24(2): 153-63, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16473828

RESUMO

CD14 is a well-known pattern-recognition receptor in the innate immune system. Here, we show that CD14 enhances double-stranded RNA (dsRNA)-mediated Toll-like receptor 3 (TLR3) activation. Bone marrow-derived macrophages (BMDMs) from CD14-/- mice exhibited impaired responses to polyinosine-polycytidylic acid (pIpC) and reduced production of inflammatory cytokines. CD14-/- mice injected with pIpC also showed impaired cytokine production. When tested with [32P] labeled pIpC small fragments (pIpCsf) that maintain the inflammatory activity of crude pIpC, CD14 directly bound pIpCsf and mediated cellular uptake of pIpCsf. Our data show that TLR3 is intracellular and directly interacts with CD14. Internalized pIpCsf was localized in the lysosomes via the endosomes. In unstimulated cells, neither CD14 nor TLR3 was detected in the lysosomes. However, TLR3 was localized in the lysosomes as was CD14 once the cells took up pIpC. We also observed that internalized pIpCsf colocalized with CD14 and TLR3. Consequently, CD14 mediates pIpC uptake and enhances TLR3 signaling.


Assuntos
Receptores de Lipopolissacarídeos/fisiologia , Macrófagos/imunologia , RNA de Cadeia Dupla/metabolismo , Receptor 3 Toll-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Vesículas Citoplasmáticas/metabolismo , Humanos , Receptores de Lipopolissacarídeos/genética , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Fosfatidilcolinas/farmacologia , Transfecção
9.
J Immunol ; 168(8): 4012-7, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11937558

RESUMO

Toll-like receptor 2 (TLR2)-mediated cell activation induced by commercial preparations of LPS was recently shown to arise from impurities whose identities are not known. In this work, we determined the molecules responsible for TLR2-mediated cell activation in LPS derived from Escherichia coli K-12 strain LCD25. When LCD25 LPS was phenol extracted, two proteins capable of TLR2-mediated cell activation were purified and identified as E. coli lipoproteins. We cloned, expressed, and purified these two lipoproteins, Lip19 and Lip12. Lip19 or Lip12 activated TNF-alpha production from RAW264.7 and THP-1 cells in a TLR2-dependent manner. However, neither Lip19 nor Lip12 activated HUVECs, which lack endogenous TLR2. Additionally, IkappaB kinase beta and c-Jun N-terminal kinase 1 activation in THP-1 cells induced by Lip19 or Lip12 was observed. TLR2 activation by Lip19 and Lip12 in HEK293 cells was blocked by inhibitory anti-TLR2 mAbs. The unlipidated mutants, Lip19-C19S and Lip12-C21S, in which the NH(2)-terminal cysteine was substituted by serine, lost their ability to activate TLR2-transfected HEK 293 cells. Taken together, these results demonstrate that two lipoproteins constitute the major contaminants responsible for TLR2-mediated cell activation in E. coli LCD25 LPS.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/fisiologia , Proteínas de Drosophila , Escherichia coli/fisiologia , Lipopolissacarídeos/isolamento & purificação , Lipoproteínas/isolamento & purificação , Lipoproteínas/fisiologia , Glicoproteínas de Membrana/fisiologia , Receptores de Superfície Celular/fisiologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Linhagem Celular , Clonagem Molecular , Escherichia coli/química , Humanos , Quinase I-kappa B , Proteínas Quinases JNK Ativadas por Mitógeno , Lipopolissacarídeos/farmacologia , Lipoproteínas/biossíntese , Lipoproteínas/genética , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Transporte Proteico/genética , Transdução de Sinais/genética , Receptor 2 Toll-Like , Receptores Toll-Like , Transfecção , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/biossíntese
10.
J Biol Chem ; 279(11): 10564-74, 2004 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-14699116

RESUMO

Toll-like receptors (TLRs) detect the presence of microbial challenge and initiate innate immune defensive responses. In this work we have explored the mechanism and role of TLR dimerization in signal transduction using the newly developed technique of beta-lactamase protein fragment complementation, among others. We observed that TLR4 interactions with itself, with MyD88, or with TLR2 were accurately reported by the enzyme complementation technique. That technique, as well as co-immunoprecipitation, transfection-initiated cell activation, and site-directed mutagenesis all suggest an important role for TLR intracellular domains in receptor dimerization. These findings broaden our understanding of TLR self-interactions as well as heterodimer formation.


Assuntos
Citoplasma/metabolismo , Glicoproteínas de Membrana/química , Receptores de Superfície Celular/química , Proteínas Adaptadoras de Transdução de Sinal , Antígenos de Diferenciação/química , Antígenos de Diferenciação/metabolismo , Linhagem Celular , Clonagem Molecular , DNA/química , DNA Complementar/metabolismo , Dimerização , Citometria de Fluxo , Genes Reporter , Teste de Complementação Genética , Vetores Genéticos , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Immunoblotting , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Mutagênese Sítio-Dirigida , Fator 88 de Diferenciação Mieloide , NF-kappa B/metabolismo , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Receptores Toll-Like , Transfecção , beta-Lactamases/metabolismo
11.
J Immunol ; 173(2): 1166-70, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15240706

RESUMO

TLR4 is the primary recognition molecule for inflammatory responses initiated by bacterial LPS (endotoxin). Internalization of endotoxin by various cell types is an important step for its removal and detoxification. Because of its role as an LPS-signaling receptor, TLR4 has been suggested to be involved in cellular LPS uptake as well. LPS uptake was investigated in primary monocytes and endothelial cells derived from TLR4 and CD14 knockout C57BL/6 mice using tritiated and fluorescein-labeled LPS. Intracellular LPS distribution was investigated by deconvolution confocal microscopy. We could not observe any difference in LPS uptake and intracellular LPS distribution in either monocytes or endothelial cells between TLR4(-/-) and wild-type cells. As expected, CD14(-/-) monocytes showed a highly impaired LPS uptake, confirming CD14-dependent uptake in monocytes. Upon longer incubation periods, the CD14-deficient monocytes mimicked the LPS uptake pattern of endothelial cells. Endothelial cell LPS uptake is slower than monocyte uptake, LBP rather than CD14 dependent, and sensitive to polyanionic polymers, which have been shown to block scavenger receptor-dependent uptake mechanisms. We conclude that TLR4 is not involved in cellular LPS uptake mechanisms. In membrane CD14-positive cells, LPS is predominantly taken up via CD14-mediated pathways, whereas in the CD14-negative endothelial cells, there is a role for scavenger receptor-dependent pathways.


Assuntos
Lipopolissacarídeos/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Endoteliais/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Monócitos/metabolismo , Receptores de Superfície Celular/genética , Receptores Imunológicos/metabolismo , Receptores Depuradores , Receptor 4 Toll-Like , Receptores Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA