Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065660

RESUMO

The purpose of this study was to enhance the stability of montelukast and levocetirizine for the development of a fixed-dose combination (FDC) monolayer tablet. To evaluate the compatibility of montelukast and levocetirizine, a mixture of the two drugs was prepared, and changes in the appearance characteristics and impurity content were observed in a dry oven at 60 °C. Excipients that contributed minimally to impurity increases were selected to minimize drug interactions. Mannitol, microcrystalline cellulose, croscarmellose sodium, hypromellose, and sodium citrate were chosen as excipients, and montelukast-levocetirizine FDC monolayer tablets were prepared by wet granulating the two drugs separately. A separate granulation of montelukast and levocetirizine, along with the addition of sodium citrate as a pH stabilizer, minimized the changes in tablet appearance and impurity levels. The prepared tablets demonstrated release profiles equivalent to those of commercial products in comparative dissolution tests. Subsequent stability testing at 40 ± 2 °C and 75 ± 5% RH for 6 months confirmed that the drug content, dissolution rate, and impurity content met the specified acceptance criteria. In conclusion, the montelukast-levocetirizine FDC monolayer tablet developed in this study offers a potential alternative to commercial products.

2.
Nanomaterials (Basel) ; 12(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35407215

RESUMO

A new type of remote red quantum-dot (QD) component was designed and fabricated to improve the color-rendering properties of conventional white LED (light-emitting diode) lightings. Based on an optical simulation, the rectangular cavity-type QD cap was designed with an opening window on the top surface. Red QD caps were fabricated using a typical injection molding technique and CdSe/ZnS QDs with a core/shell structure whose average size was ~6 nm. Red QD caps were applied to conventional 6-inch, 15-W white LED downlighting consisting of 72 LEDs arrayed concentrically. The red QD caps placed over white LEDs enhanced the red components in the long-wavelength range resulting in the increase of the color rendering index (CRI) from 82.9 to 94.5. The correlated color temperature was tuned easily in a wide range by adopting various configurations consisting of different QD caps. The spatial and angular homogeneities were secured on the emitting area because QD caps placed over the white LEDs did not exhibit any substantial optical path length difference. The present study demonstrates that adopting QD caps in conventional LED lightings provides a flexible and efficient method to realize a high color-rendering property and to adjust correlated color temperature appropriately for a specific application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA