Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
Nature ; 614(7946): 88-94, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653458

RESUMO

Two-dimensional (2D) materials and their heterostructures show a promising path for next-generation electronics1-3. Nevertheless, 2D-based electronics have not been commercialized, owing mainly to three critical challenges: i) precise kinetic control of layer-by-layer 2D material growth, ii) maintaining a single domain during the growth, and iii) wafer-scale controllability of layer numbers and crystallinity. Here we introduce a deterministic, confined-growth technique that can tackle these three issues simultaneously, thus obtaining wafer-scale single-domain 2D monolayer arrays and their heterostructures on arbitrary substrates. We geometrically confine the growth of the first set of nuclei by defining a selective growth area via patterning SiO2 masks on two-inch substrates. Owing to substantial reduction of the growth duration at the micrometre-scale SiO2 trenches, we obtain wafer-scale single-domain monolayer WSe2 arrays on the arbitrary substrates by filling the trenches via short growth of the first set of nuclei, before the second set of nuclei is introduced, thus without requiring epitaxial seeding. Further growth of transition metal dichalcogenides with the same principle yields the formation of single-domain MoS2/WSe2 heterostructures. Our achievement will lay a strong foundation for 2D materials to fit into industrial settings.

2.
Proc Natl Acad Sci U S A ; 121(27): e2314702121, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38916997

RESUMO

Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (cerebral ventriculomegaly), the cardinal feature of congenital hydrocephalus (CH), is increasingly recognized among patients with autism spectrum disorders (ASD). KATNAL2, a member of Katanin family microtubule-severing ATPases, is a known ASD risk gene, but its roles in human brain development remain unclear. Here, we show that nonsense truncation of Katnal2 (Katnal2Δ17) in mice results in classic ciliopathy phenotypes, including impaired spermatogenesis and cerebral ventriculomegaly. In both humans and mice, KATNAL2 is highly expressed in ciliated radial glia of the fetal ventricular-subventricular zone as well as in their postnatal ependymal and neuronal progeny. The ventriculomegaly observed in Katnal2Δ17 mice is associated with disrupted primary cilia and ependymal planar cell polarity that results in impaired cilia-generated CSF flow. Further, prefrontal pyramidal neurons in ventriculomegalic Katnal2Δ17 mice exhibit decreased excitatory drive and reduced high-frequency firing. Consistent with these findings in mice, we identified rare, damaging heterozygous germline variants in KATNAL2 in five unrelated patients with neurosurgically treated CH and comorbid ASD or other neurodevelopmental disorders. Mice engineered with the orthologous ASD-associated KATNAL2 F244L missense variant recapitulated the ventriculomegaly found in human patients. Together, these data suggest KATNAL2 pathogenic variants alter intraventricular CSF homeostasis and parenchymal neuronal connectivity by disrupting microtubule dynamics in fetal radial glia and their postnatal ependymal and neuronal descendants. The results identify a molecular mechanism underlying the development of ventriculomegaly in a genetic subset of patients with ASD and may explain persistence of neurodevelopmental phenotypes in some patients with CH despite neurosurgical CSF shunting.


Assuntos
Cílios , Hidrocefalia , Microtúbulos , Animais , Hidrocefalia/genética , Hidrocefalia/patologia , Hidrocefalia/metabolismo , Humanos , Camundongos , Microtúbulos/metabolismo , Masculino , Cílios/metabolismo , Cílios/patologia , Feminino , Katanina/metabolismo , Katanina/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/metabolismo , Neurônios/metabolismo , Epêndima/metabolismo , Epêndima/patologia , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Células Piramidais/metabolismo , Células Piramidais/patologia
3.
PLoS Pathog ; 19(2): e1011047, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36730465

RESUMO

The obligate intracellular Chlamydiaceae do not need to resist osmotic challenges and thus lost their cell wall in the course of evolution. Nevertheless, these pathogens maintain a rudimentary peptidoglycan machinery for cell division. They build a transient peptidoglycan ring, which is remodeled during the process of cell division and degraded afterwards. Uncontrolled degradation of peptidoglycan poses risks to the chlamydial cell, as essential building blocks might get lost or trigger host immune response upon release into the host cell. Here, we provide evidence that a primordial enzyme class prevents energy intensive de novo synthesis and uncontrolled release of immunogenic peptidoglycan subunits in Chlamydia trachomatis. Our data indicate that the homolog of a Bacillus NlpC/P60 protein is widely conserved among Chlamydiales. We show that the enzyme is tailored to hydrolyze peptidoglycan-derived peptides, does not interfere with peptidoglycan precursor biosynthesis, and is targeted by cysteine protease inhibitors in vitro and in cell culture. The peptidase plays a key role in the underexplored process of chlamydial peptidoglycan recycling. Our study suggests that chlamydiae orchestrate a closed-loop system of peptidoglycan ring biosynthesis, remodeling, and recycling to support cell division and maintain long-term residence inside the host. Operating at the intersection of energy recovery, cell division and immune evasion, the peptidoglycan recycling NlpC/P60 peptidase could be a promising target for the development of drugs that combine features of classical antibiotics and anti-virulence drugs.


Assuntos
Chlamydia trachomatis , Peptidoglicano , Chlamydia trachomatis/metabolismo , Peptidoglicano/metabolismo , Evasão da Resposta Imune , Proteínas de Bactérias/metabolismo , Divisão Celular , Parede Celular/metabolismo , Peptídeo Hidrolases/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(18): e2201646119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35507892

RESUMO

Multiple membrane organelles require cholesterol for proper function within cells. The Niemann-Pick type C (NPC) proteins export cholesterol from endosomes to other membrane compartments, including the endoplasmic reticulum (ER), plasma membrane (PM), trans-Golgi network (TGN), and mitochondria, to meet their cholesterol requirements. Defects in NPC cause malfunctions in multiple membrane organelles and lead to an incurable neurological disorder. Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1), a resident enzyme in the ER, converts cholesterol to cholesteryl esters for storage. In mutant NPC cells, cholesterol storage still occurs in an NPC-independent manner. Here we report the interesting finding that in a mutant Npc1 mouse (Npc1nmf), Acat1 gene (Soat1) knockout delayed the onset of weight loss, motor impairment, and Purkinje neuron death. It also improved hepatosplenic pathology and prolonged lifespan by 34%. In mutant NPC1 fibroblasts, ACAT1 blockade (A1B) increased cholesterol content associated with TGN-rich membranes and mitochondria, while decreased cholesterol content associated with late endosomes. A1B also restored proper localization of syntaxin 6 and golgin 97 (key proteins in membrane trafficking at TGN) and improved the levels of cathepsin D (a key protease in lysosome and requires Golgi/endosome transport for maturation) and ABCA1 (a key protein controlling cholesterol release at PM). This work supports the hypothesis that diverting cholesterol from storage can benefit multiple diseases that involve cholesterol deficiencies in cell membranes.


Assuntos
Longevidade , Doença de Niemann-Pick Tipo C , Acetil-CoA C-Acetiltransferase , Doença de Alzheimer , Animais , Colesterol , Ésteres do Colesterol , Modelos Animais de Doenças , Endossomos/genética , Camundongos , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Esterol O-Aciltransferase
5.
Semin Cancer Biol ; 93: 123-128, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236329

RESUMO

Small cell lung cancer (SCLC) is a recalcitrant cancer with an urgent need for novel therapeutics, preclinical models, and elucidation of the molecular pathways responsible for its rapid resistance. Recently, there have been many significant advancements in our knowledge of SCLC that led to the development of novel treatments. This review will go over the recent attempts to provide new molecular subcategorization of SCLC, recent breakthroughs in various systemic treatments including immunotherapy, targeted therapy, cellular therapy, as well as advancements in radiation therapy.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/terapia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Imunoterapia
6.
J Am Chem Soc ; 146(21): 14724-14733, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38757532

RESUMO

Despite decades of research, the dominant charge generation mechanism in organic bulk heterojunction (BHJ) devices is not completely understood. While the local dielectric environments of the photoexcited molecules are important for exciton dissociation, conventional characterizations cannot separately measure the polarizability of electron-donor and electron-acceptor, respectively, in their blends, making it difficult to decipher the spectrally different charge generation efficiencies in organic BHJ devices. Here, by spectrally resolved electroabsorption spectroscopy, we report extraction of the excited state polarizability for individual donors and acceptors in a series of organic blend films. Regardless of the donor and acceptor, we discovered that larger exciton polarizability is linked to larger π-π coherence length and faster charge transfer across the heterojunction, which fundamentally explains the origin of the higher charge generation efficiency near 100% in the BHJ photodiodes. We also show that the molecular packing of the donor and acceptor influence each other, resulting in a synergetic enhancement in the exciton polarizability.

7.
J Am Chem Soc ; 146(9): 6072-6083, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38400985

RESUMO

Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks are promising candidates for carbon capture that exhibit exceptional selectivities and high capacities for CO2. To date, CO2 uptake in these materials has been shown to occur predominantly via a chemisorption mechanism involving CO2 insertion at the amine-appended metal sites, a mechanism that limits the capacity of the material to ∼1 equiv of CO2 per diamine. Herein, we report a new framework, pip2-Mg2(dobpdc) (pip2 = 1-(2-aminoethyl)piperidine), that exhibits two-step CO2 uptake and achieves an unusually high CO2 capacity approaching 1.5 CO2 per diamine at saturation. Analysis of variable-pressure CO2 uptake in the material using solid-state nuclear magnetic resonance (NMR) spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that pip2-Mg2(dobpdc) captures CO2 via an unprecedented mechanism involving the initial insertion of CO2 to form ammonium carbamate chains at half of the sites in the material, followed by tandem cooperative chemisorption and physisorption. Powder X-ray diffraction analysis, supported by van der Waals-corrected density functional theory, reveals that physisorbed CO2 occupies a pocket formed by adjacent ammonium carbamate chains and the linker. Based on breakthrough and extended cycling experiments, pip2-Mg2(dobpdc) exhibits exceptional performance for CO2 capture under conditions relevant to the separation of CO2 from landfill gas. More broadly, these results highlight new opportunities for the fundamental design of diamine-Mg2(dobpdc) materials with even higher capacities than those predicted based on CO2 chemisorption alone.

8.
PLoS Pathog ; 18(9): e1010836, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36095021

RESUMO

Pathogenic Chlamydia species are coccoid bacteria that use the rod-shape determining protein MreB to direct septal peptidoglycan synthesis during their polarized cell division process. How the site of polarized budding is determined in this bacterium, where contextual features like membrane curvature are seemingly identical, is unclear. We hypothesized that the accumulation of the phospholipid, cardiolipin (CL), in specific regions of the cell membrane induces localized membrane changes that trigger the recruitment of MreB to the site where the bud will arise. To test this, we ectopically expressed cardiolipin synthase (Cls) and observed a polar distribution for this enzyme in Chlamydia trachomatis. In early division intermediates, Cls was restricted to the bud site where MreB is localized and peptidoglycan synthesis is initiated. The localization profile of 6xHis tagged Cls (Cls_6xH) throughout division mimicked the distribution of lipids that stain with NAO, a dye that labels CL. Treatment of Chlamydia with 3',6-dinonylneamine (diNN), an antibiotic targeting CL-containing membrane domains, resulted in redistribution of Cls_6xH and NAO-staining phospholipids. In addition, 6xHis tagged MreB localization was altered by diNN treatment, suggesting an upstream regulatory role for CL-containing membranes in directing the assembly of MreB. This hypothesis is consistent with the observation that the clustered localization of Cls_6xH is not dependent upon MreB function or peptidoglycan synthesis. Furthermore, expression of a CL-binding protein at the inner membrane of C. trachomatis dramatically inhibited bacterial growth supporting the importance of CL in the division process. Our findings implicate a critical role for localized CL synthesis in driving MreB assembly at the bud site during the polarized cell division of Chlamydia.


Assuntos
Chlamydia trachomatis , Peptidoglicano , Antibacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cardiolipinas , Divisão Celular , Chlamydia trachomatis/metabolismo , Fosfolipídeos/metabolismo
9.
J Appl Clin Med Phys ; 25(3): e14310, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38373283

RESUMO

PURPOSE: Radiation therapy (RT) of pediatric brain cancer is known to be associated with long-term neurocognitive deficits. Although target and organs-at-risk (OARs) are contoured as part of treatment planning, other structures linked to cognitive functions are often not included. This paper introduces a novel automatic segmentation tool specifically designed for the unique challenges posed by pediatric patients undergoing brain RT, as well as its seamless integration into the existing clinical workflow. METHODS AND MATERIALS: Images of 47 pediatric brain cancer patients aged 1 to 20 years old and 33 two-year-old healthy infants were used to train a vision transformer, UNesT, for the segmentation of five brain OARs. The trained model was then incorporated to clinical workflow via DICOM connections between a treatment planning system (TPS) and a server hosting the trained model such that scans are sent from TPS to the server, automatically segmented, and sent back to TPS for treatment planning. RESULTS: The proposed automatic segmentation framework achieved a median dice similarity coefficient of 0.928 (frontal white matter), 0.908 (corpus callosum), 0.933 (hippocampi), 0.819 (temporal lobes), and 0.960 (brainstem) with a mean ± SD run time of 1.8 ± 0.67 s over 20 test cases. CONCLUSIONS: The pediatric brain segmentation tool showed promising performance on five OARs linked to neurocognitive functions and can easily be extended for additional structures. The proposed integration to the clinic enables easy access to the tool from clinical platforms and minimizes disruption to existing workflow while maximizing its benefits.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Humanos , Criança , Lactente , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Fluxo de Trabalho , Processamento de Imagem Assistida por Computador/métodos , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Encéfalo/diagnóstico por imagem
10.
J Clin Nurs ; 33(4): 1470-1481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38050923

RESUMO

AIM: This study aimed to investigate the relationships among occupational stress, recovery experience and turnover intention among nurses caring for patients with coronavirus disease 2019 (COVID-19). BACKGROUND: The high turnover intention among nurses affect patient safety quality of patient care. DESIGN: The cross-sectional study design was used. This study was guided by STROBE. METHODS: Convenience sampling identified 202 registered nurses working in the COVID-19 wards of three tertiary general hospitals in two cities in South Korea. The collected data were analysed using SPSS version 26.0, and the PROCESS macro in SPSS was employed to estimate path coefficients and assess the adequacy of the model. The moderating effects of recovery experience on the pathway in which occupational stress of the participants affects turnover intention were verified using model 1 of the SPSS PROCESS macro proposed by Hayes. RESULTS: The recovery experience did not significantly mediate the relationship between occupational stress and turnover intention. However, it had significant moderating effect on the relationship between occupational stress and turnover intention (ß = .005, 95% CI [.001, .010]). The effect of occupational stress on turnover intention was dependent on recovery experience. CONCLUSION: The results revealed that occupational stress among nurses caring for patients with COVID-19 affect the turnover intention and the level of recovery experience moderates this relationship. Thus, not only during the COVID-19 pandemic but also during challenging times of various infectious disease outbreaks, hospitals can enhance the health and well-being of nurses and promote the retention of nursing staff. IMPLICATIONS FOR THE PROFESSION: During the COVID-19 pandemic, nurses have been exposed to understaffing and overwhelming workloads. However, policies for nurses' welfare and benefits are still insufficient, even as the pandemic comes to an end. The results of this study indicate that sufficient rest and appropriate nursing personnel are of utmost importance to nurses. PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution.


Assuntos
COVID-19 , Enfermeiras e Enfermeiros , Recursos Humanos de Enfermagem Hospitalar , Estresse Ocupacional , Humanos , Intenção , Estudos Transversais , Pandemias , Satisfação no Emprego , COVID-19/epidemiologia , Estresse Ocupacional/epidemiologia , Reorganização de Recursos Humanos , Inquéritos e Questionários
11.
Nano Lett ; 23(9): 3897-3903, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37083438

RESUMO

Simple, low-cost, and accurate nucleic acid assay platforms hold great promise for point-of-care (POC) pathogen detection, disease surveillance, and control. Plasmonic photothermal polymerase chain reaction (PPT-PCR) is a powerful and efficient nucleic acid amplification technique, but it lacks a simple and convenient analysis method for POC applications. Herein, we propose a novel plasmonic cross-linking colorimetric PCR (PPT-ccPCR) assay by integrating plasmonic magnetic nanoparticle (PMN)-based PPT-PCR with gold nanoparticle (AuNP)-based cross-linking colorimetry. AuNPs form assembled structures with the PMNs in the presence of amplicons and collect in a magnetic field, resulting in color changes to the supernatant. Target DNA with concentrations as low as 5 copies/µL can be visually detected within 40 min. The achieved limit of detection was 1.8 copies/µL based on the absorption signals. This simple and sensitive strategy needs no expensive instrumentation and demonstrates high potential for POC detection while enabling further applications in clinical diagnostics.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Colorimetria/métodos , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Reação em Cadeia da Polimerase , Técnicas de Amplificação de Ácido Nucleico/métodos
12.
J Bacteriol ; 205(6): e0009223, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37191556

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterial pathogen. In evolving to the intracellular niche, Chlamydia has reduced its genome size compared to other bacteria and, as a consequence, has a number of unique features. For example, Chlamydia engages the actin-like protein MreB, rather than the tubulin-like protein FtsZ, to direct peptidoglycan (PG) synthesis exclusively at the septum of cells undergoing polarized cell division. Interestingly, Chlamydia possesses another cytoskeletal element-a bactofilin ortholog, BacA. Recently, we reported BacA is a cell size-determining protein that forms dynamic membrane-associated ring structures in Chlamydia that have not been observed in other bacteria with bactofilins. Chlamydial BacA possesses a unique N-terminal domain, and we hypothesized this domain imparts the membrane-binding and ring-forming properties of BacA. We show that different truncations of the N terminus result in distinct phenotypes: removal of the first 50 amino acids (ΔN50) results in large ring structures at the membrane whereas removal of the first 81 amino acids (ΔN81) results in an inability to form filaments and rings and a loss of membrane association. Overexpression of the ΔN50 isoform altered cell size, similar to loss of BacA, suggesting that the dynamic properties of BacA are essential for the regulation of cell size. We further show that the region from amino acid 51 to 81 imparts membrane association as appending it to green fluorescent protein (GFP) resulted in the relocalization of GFP from the cytosol to the membrane. Overall, our findings suggest two important functions for the unique N-terminal domain of BacA and help explain its role as a cell size determinant. IMPORTANCE Bacteria use a variety of filament-forming cytoskeletal proteins to regulate and control various aspects of their physiology. For example, the tubulin-like FtsZ recruits division proteins to the septum whereas the actin-like MreB recruits peptidoglycan (PG) synthases to generate the cell wall in rod-shaped bacteria. Recently, a third class of cytoskeletal protein has been identified in bacteria-bactofilins. These proteins have been primarily linked to spatially localized PG synthesis. Interestingly, Chlamydia, an obligate intracellular bacterium, does not have PG in its cell wall and yet possesses a bactofilin ortholog. In this study, we characterize a unique N-terminal domain of chlamydial bactofilin and show that this domain controls two important functions that affect cell size: its ring-forming and membrane-associating properties.


Assuntos
Proteínas de Bactérias , Tubulina (Proteína) , Proteínas de Bactérias/metabolismo , Actinas , Peptidoglicano/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Aminoácidos
13.
J Am Chem Soc ; 145(31): 17151-17163, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493594

RESUMO

Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks have emerged as promising candidates for carbon capture owing to their exceptional CO2 selectivities, high separation capacities, and step-shaped adsorption profiles, which arise from a unique cooperative adsorption mechanism resulting in the formation of ammonium carbamate chains. Materials appended with primary,secondary-diamines featuring bulky substituents, in particular, exhibit excellent stabilities and CO2 adsorption properties. However, these frameworks display double-step adsorption behavior arising from steric repulsion between ammonium carbamates, which ultimately results in increased regeneration energies. Herein, we report frameworks of the type diamine-Mg2(olz) (olz4- = (E)-5,5'-(diazene-1,2-diyl)bis(2-oxidobenzoate)) that feature diverse diamines with bulky substituents and display desirable single-step CO2 adsorption across a wide range of pressures and temperatures. Analysis of CO2 adsorption data reveals that the basicity of the pore-dwelling amine─in addition to its steric bulk─is an important factor influencing adsorption step pressure; furthermore, the amine steric bulk is found to be inversely correlated with the degree of cooperativity in CO2 uptake. One material, ee-2-Mg2(olz) (ee-2 = N,N-diethylethylenediamine), adsorbs >90% of the CO2 from a simulated coal flue stream and exhibits exceptional thermal and oxidative stability over the course of extensive adsorption/desorption cycling, placing it among top-performing adsorbents to date for CO2 capture from a coal flue gas. Spectroscopic characterization and van der Waals-corrected density functional theory calculations indicate that diamine-Mg2(olz) materials capture CO2 via the formation of ammonium carbamate chains. These results point more broadly to the opportunity for fundamentally advancing materials in this class through judicious design.

14.
Small ; 19(35): e2301905, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093175

RESUMO

The development of adsorbents for Kr and Xe separation is essential to meet industrial demands and for energy conservation. Although a number of previous studies have focused on Xe-selective adsorbents, stimuli-responsive Xe/Kr-selective adsorbents still remain underdeveloped. Herein, a Hofmann-type framework Co(DABCO)[Ni(CN)4 ] (referred to as CoNi-DAB; DABCO = 1,4-diazabicyclo[2,2,2]octane) that provides a temperature-dependent switchable Xe/Kr separation performance is reported. CoNi-DAB showed high Kr/Xe (0.8/0.2) selectivity with significant Kr adsorption at 195 K as well as high Xe/Kr (0.2/0.8) selectivity with superior Xe adsorption at 298 K. Such adsorption features are associated with the temperature-dependent rotational configuration of the DABCO ligand, which affects the kinetic gate-opening temperature of Xe and Kr. The packing densities of Xe (2.886 g cm-3 at 298 K) and Kr (2.399 g  cm-3 at 195 K) inside the framework are remarkable and comparable with those of liquid Xe (3.057 g cm-3 ) and liquid Kr (2.413 g cm-3 ), respectively. Breakthrough experiments confirm the temperature-dependent reverse separation performance of CoNi-DAB at 298 K under dry and wet (88% relative humidity) conditions and at 195 K under dry conditions. The unique adsorption behavior is also verified through van der Waals (vdW)-corrected density functional theory (DFT) calculations and nudged elastic band (NEB) simulations.

15.
16.
J Sex Med ; 20(6): 749-755, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37037785

RESUMO

BACKGROUND: Structural alterations of the penis, including cavernosal apoptosis and fibrosis, induce venous leakage into the corpus cavernosum or cavernosal veno-occlusive dysfunction, a key pathophysiology associated with erectile dysfunction after radical prostatectomy. We hypothesized that the effect of JNK inhibitors on reducing apoptosis and hepatocyte growth factor (HGF) on inducing tissue regeneration could be another treatment mechanism of erectile dysfunction after radical prostatectomy. AIM: To investigate whether JNK inhibition combined with intracavernosal administration of HGF can completely preserve cavernosal veno-occlusive function (CVOF) in a rat model of erectile dysfunction induced via bilateral cavernosal nerve crush injury (CNCI). METHODS: A total of 42 male Sprague-Dawley rats were randomly assigned to sham control (group S), CNCI (group I), and CNCI treated with a combination of JNK inhibitor and HGF (group J + H) for 5 weeks after surgery. OUTCOMES: Rats in each group were evaluated via dynamic infusion cavernosometry (DIC), caspase-3 activity assay, Masson trichrome staining, immunohistochemical staining of α-smooth muscle actin, and immunoblotting at 5 weeks after surgery. RESULTS: Regarding CVOF, group I showed decreased papaverine response, increased maintenance, and drop rates of DIC when compared with group S. Group J + H showed significant improvement in the 3 DIC parameters vs group I. No differences in the 3 DIC parameters were found between group J + H and group S. Regarding the structural integrity of the corpus cavernosum, group I showed increased caspase-3 activity, decreased smooth muscle (SM):collagen ratio, decreased SM content, decreased protein expression of PECAM-1, and decreased phosphorylation of c-Jun and c-Met. Group J + H showed significant attenuation in histologic and molecular derangement as compared with group I. There were no differences in caspase-3 activity, SM content, SM:collagen ratio, PECAM-1 protein expression, c-Jun phosphorylation, and c-Met phosphorylation between groups J + H and S. CLINICAL IMPLICATIONS: Our results suggest that antiapoptotic and regenerative therapy for the corpus cavernosum is a potential mechanism of penile rehabilitation after radical prostatectomy. STRENGTHS AND LIMITATIONS: This study provides evidence that combination treatment of JNK inhibitor and HGF preserves erectile function by restoring corporal SM and endothelium. However, additional human studies are needed to confirm the clinical effect. CONCLUSION: Chronic treatment with JNK inhibitor and HGF may preserve CVOF to levels comparable to sham control by preserving the structural integrity of the corpus cavernosum and so represents a potential therapeutic option for preventing the development of cavernosal veno-occlusive dysfunction.


Assuntos
Disfunção Erétil , Traumatismos do Sistema Nervoso , Animais , Humanos , Masculino , Ratos , Caspase 3 , Modelos Animais de Doenças , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Fator de Crescimento de Hepatócito/farmacologia , Fator de Crescimento de Hepatócito/uso terapêutico , Ereção Peniana , Pênis/inervação , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Ratos Sprague-Dawley
17.
Appl Nurs Res ; 72: 151696, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423681

RESUMO

BACKGROUND: Authentic leadership affects the safety climate or job satisfaction of nurses, especially in intensive care unit (ICU). It is extremely challenging to find a suitable instrument for measuring authentic leadership among Korean nurses. Because the existing scales were developed within a Western cultural context and among business students, a new scale for measuring authentic leadership among Korean nurses must be evaluated. OBJECTIVES: This study aimed to assess the reliability of the Korean version of the Authentic Leadership Inventory (K-ALI) for ICU nurses. DESIGN: A cross-sectional study and secondary data analysis were used. METHODS: This study evaluated 203 ICU registered nurses from four South Korean university hospitals. The ALI developed by Neider and Schriesheim was developed. The reliability and validity of this scale were analyzed using Cronbach's alpha and factor analysis. RESULTS: The factor analysis identified two subconstructs that accounted for 57.3 % of the total variance. The overall model fit indices for the K-ALI from the confirmatory factor analysis were an acceptable fit. Cronbach's alpha for the internal consistency of the reliability was 0.92. CONCLUSION: Using the K-ALI, nurses can assess authentic leadership and develop or demonstrate their professional leadership.


Assuntos
Liderança , Enfermeiras e Enfermeiros , Humanos , Estudos Transversais , Reprodutibilidade dos Testes , Inquéritos e Questionários , Unidades de Terapia Intensiva , República da Coreia , Psicometria
18.
J Am Chem Soc ; 144(22): 9672-9683, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608536

RESUMO

Ammonia is a promising energy vector that can store the high energy density of hydrogen. For this reason, numerous adsorbents have been investigated as ammonia storage materials, but ammonia adsorbents with a high gravimetric/volumetric ammonia capacity that can be simultaneously regenerated in an energy-efficient manner remain underdeveloped, which hampers their practical implementation. Herein, we report Ni_acryl_TMA (TMA = thiomallic acid), an acidic group-functionalized metal-organic framework prepared via successive postsynthetic modifications of mesoporous Ni2Cl2BTDD (BTDD = bis(1H-1,2,3,-triazolo [4,5-b],-[4',5'-i]) dibenzo[1,4]dioxin). By virtue of the densely located acid groups, Ni_acryl_TMA exhibited a top-tier gravimetric ammonia capacity of 23.5 mmol g-1 and the highest ammonia storage of 0.39 g cm-3 at 1 bar and 298 K. The structural integrity and ammonia storage capacity of Ni_acryl_TMA were maintained after ammonia adsorption-desorption tests over five cycles. Temperature-programmed desorption analysis revealed that the moderate strength of the interaction between the functional groups and ammonia significantly reduced the desorption temperature compared to that of the pristine framework with open metal sites. The structures of the postsynthetic modified analogues were elucidated based on Pawley/Rietveld refinement of the synchrotron powder X-ray diffraction patterns and van der Waals (vdW)-corrected density functional theory (DFT) calculations. Furthermore, the ammonia adsorption mechanism was investigated via in situ infrared and vdW-corrected DFT calculations, revealing an atypical guest-induced binding mode transformation of the integrated carboxylate. Dynamic breakthrough tests showed that Ni_acryl_TMA can selectively capture traces of ammonia under both dry and wet conditions (80% relative humidity). These results demonstrate that Ni_acryl_TMA is a superior ammonia storage/capture material.

19.
Prostate ; 82(1): 49-58, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34609772

RESUMO

BACKGROUND: Because of structural alterations in the corpus cavernosum after radical prostatectomy (RP), post-RP erectile dysfunction remains a very difficult condition to treat. We aimed to determine if the combined administration of a Jun-amino terminal kinase (JNK) inhibitor and hepatocyte growth factor (HGF) in the immediate post-injury period would restore erectile function by antiapoptotic and pro-regenerative effects through the rectification of molecular pathways related to the structural integrity of the penis in a rat model of bilateral cavernosal nerve crush injury (CNCI). METHODS: A total of 70 rats were divided into five groups: Sham surgery (S), CNCI (I), and once-daily intraperitoneal administration of 10.0 mg/kg JNK inhibitor + twice-weekly intracavernosal administration of low-dose (2.1 µg), medium-dose (4.2 µg), or high-dose (8.4 µg) HGF (I + J + LH or I + J + MH or I + J + HH, respectively) in the immediate post-injury period. Erectile responses to electrostimulation (1.0, 3.0, and 5.0 V), histological staining, caspase-3 activity, and Western blotting were evaluated 9 days after surgery. RESULTS: Group I showed lower intracavernosal pressure (ICP)/mean arterial pressure (MAP) after stimulation at each voltage, lower area under the curve (AUC)/MAP after stimulation at each voltage, less smooth muscle (SM) content, a lower SM/collagen ratio, higher caspase-3 activity, increased cJun phosphorylation, decreased protein expression of PECAM-1, decreased cMet phosphorylation, and decreased endothelial nitric oxide synthase (eNOS) phosphorylation compared to Group S. The SM content, SM/collagen ratio, protein expression of ICP/MAP, or AUC/MAP after stimulation at each voltage in Group I + J + LH were partially restored, despite the normalization of cJun phosphorylation and caspase-3 activity. The ICP/MAP, AUC/MAP, caspase-3 activity, SM content, protein expression of PECAM-1, cJun phosphorylation, cMet phosphorylation, and eNOS phosphorylation in both Groups I + J + MH and I + J + HH were restored to the levels observed in Group S, while the SM/collagen ratio was significantly improved but not completely normalized. CONCLUSIONS: Our data indicated that the combined administration of a JNK inhibitor and medium or high-dose HGF to nerve-injured rats in the immediate post-injury period after CNCI may restore erectile function to a level comparable to the normal level by suppressing cavernosal apoptosis and preserving the integrity of SM or endothelium via rectification of the cJun and cMet/eNOS pathways.


Assuntos
Apoptose/efeitos dos fármacos , Disfunção Erétil , Regeneração Nervosa , Pênis , Prostatectomia/efeitos adversos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Disfunção Erétil/etiologia , Disfunção Erétil/metabolismo , Disfunção Erétil/terapia , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , MAP Quinase Quinase 4/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Ereção Peniana/efeitos dos fármacos , Pênis/irrigação sanguínea , Pênis/lesões , Pênis/inervação , Pênis/fisiopatologia , Ratos , Ratos Sprague-Dawley
20.
J Chem Phys ; 156(15): 154113, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35459296

RESUMO

Diamine-functionalized M2(dobpdc) (M = Mg, Mn, Fe, Co, Zn) metal-organic frameworks (MOFs) are among a growing class of crystalline solids currently being intensively investigated for carbon capture as they exhibit a novel cooperative and selective CO2 adsorption mechanism and a step-shaped isotherm. To understand their CO2 adsorption behavior, ab initio calculations with near-chemical accuracy (∼6 kJ/mol, an average experimental error) are required. Here, we present density functional theory (DFT) calculations of CO2 adsorption in m-2-m-Zn2(dobpdc) (m-2-m = N,N'-dimethylethyle-nediamine and dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) with different exchange-correlation functionals, including semilocal functionals [Perdew-Burke-Ernzerhof (PBE) and two revised PBE functionals], semiempirical pairwise corrections (D3 and Tkatchenko-Scheffler), nonlocal van der Waals (vdW) correlation functionals-vdW-optB88 (or vdW-DF-optB88), vdW-DF1, vdW-DF2, vdW-DF2-B86R (or rev-vdW-DF2), vdW-DF-cx (and vdW-DF-cx0), and revised VV10-and the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (GGA). Overall, we find that revPBE+D3 and RPBE+D3 show the best balance of performance for both the lattice parameters and the CO2 binding enthalpy of m-2-m-Zn2(dobpdc). revPBE+D3 and RPBE+D3 predict the m-2-m-Zn2(dobpdc) lattice parameters to within 1.4% of experiment and predict CO2 binding enthalpies of -68 kJ/mol, which compare reasonably well with the experiment (-57 kJ/mol). Although PBE (-57.7 kJ/mol), vdW-DF1 (-49.6 kJ/mol), and vdW-DF2 (-44.3 kJ/mol) are also found to predict the CO2 binding enthalpy with good accuracy, they overestimate lattice parameters and bond lengths. The other functionals considered predict the lattice parameters with the same accuracy as revPBE+D3 and RPBE+D3, but they overbind CO2 by around 26-50 kJ/mol. We find that the superior performance of revPBE+D3 and RPBE+D3 is sustained for the formation enthalpy and the lattice parameters of ammonium carbamate, a primary product of the cooperative CO2 insertion in diamine-functionalized M2(dobpdc) MOFs. Moreover, we find that their performance is derived from their larger repulsive exchange contributions to the CO2 binding enthalpy than the other functionals at the relevant range of the reduced density gradient value for the energetics of CO2 adsorption in the m-2-m-Zn2(dobpdc) MOF. A broader examination of the performance of RPBE+D3 for the structural parameters and CO2 binding enthalpies of 13 diamine-functionalized Mg2(dobpdc) MOFs further demonstrates that RPBE+D3 successfully reproduces experimental CO2 binding enthalpies and reveals a logarithmic relationship between the step pressure and the CO2 binding enthalpy of the diamine-functionalized Mg2(dobpdc) MOFs, consistent with experiments where available. The results of our benchmarking study can help guide the further development of versatile vdW-corrected DFT methods with predictive accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA