Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 69(15): 3609-3623, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29722815

RESUMO

A smoke-derived compound, karrikin (KAR), and an endogenous but as yet unidentified KARRIKIN INSENSITIVE2 (KAI2) ligand (KL) have been identified as chemical cues in higher plants that impact on multiple aspects of growth and development. Genetic screening of light-signaling mutants in Arabidopsis thaliana has identified a mutant designated as ply2 (pleiotropic long hypocotyl2) that has pleiotropic light-response defects. In this study, we used positional cloning to identify the molecular lesion of ply2 as a missense mutation of KAI2/HYPOSENSITIVE TO LIGHT, which causes a single amino acid substitution, Ala219Val. Physiological analysis and genetic epistasis analysis with the KL-signaling components MORE AXILLARY GROWTH2 (MAX2) and SUPPRESSOR OF MAX2 1 suggested that the pleiotropic phenotypes of the ply2 mutant can be ascribed to a defect in KL-signaling. Molecular and biochemical analyses revealed that the mutant KAI2ply2 protein is impaired in its ligand-binding activity. In support of this conclusion, X-ray crystallography studies suggested that the KAI2ply2 mutation not only results in a narrowed entrance gate for the ligand but also alters the structural flexibility of the helical lid domains. We discuss the structural implications of the Ala219 residue with regard to ligand-specific binding and signaling of KAI2, together with potential functions of KL-signaling in the context of the light-regulatory network in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Hidrolases/metabolismo , Transdução de Sinal Luminoso/efeitos da radiação , Alelos , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Hidrolases/genética , Ligantes , Luz , Mutação de Sentido Incorreto , Fenótipo
2.
Plant Cell Physiol ; 56(3): 572-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25520403

RESUMO

1-Aminocyclopropane-1-carboxylic acid (ACC) is a biosynthetic precursor of ethylene, a gaseous plant hormone which controls a myriad of aspects of development and stress adaptation in higher plants. Here, we identified a mutant in Arabidopsis thaliana, designated as ACC-resistant2 (are2), displaying a dose-dependent resistance to exogenously applied ACC. Physiological analyses revealed that mutation of are2 impaired various aspects of exogenous ACC-induced ethylene responses, while not affecting sensitivity to other plant hormones during seedling development. Interestingly, the are2 mutant was normally sensitive to gaseous ethylene, compared with the wild type. Double mutant analysis showed that the ethylene-overproducing mutations, eto1 or eto3, and the constitutive ethylene signaling mutation, ctr1 were epistatic to the are2 mutation. These results suggest that the are2 mutant is not defective in ethylene biosynthesis or ethylene signaling per se. Map-based cloning of ARE2 demonstrated that LYSINE HISTIDINE TRANSPORTER1 (LHT1), encoding an amino acid transporter, is the gene responsible. An uptake experiment with radiolabeled ACC indicated that mutations of LHT1 reduced, albeit not completely, uptake of ACC. Further, we performed an amino acid competition assay and found that two amino acids, alanine and glycine, known as substrates of LHT1, could suppress the ACC-induced triple response in a LHT1-dependent way. Taken together, these results provide the first molecular genetic evidence supporting that a class of amino acid transporters including LHT1 takes part in transport of ACC, thereby influencing exogenous ACC-induced ethylene responses in A. thaliana.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos Cíclicos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Alelos , Aminoácidos/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Radioisótopos de Carbono , Mapeamento Cromossômico , Clonagem Molecular , Epistasia Genética/efeitos dos fármacos , Etilenos/metabolismo , Etilenos/farmacologia , Mutação
3.
Front Plant Sci ; 10: 1092, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572413

RESUMO

1-Aminocyclopropane-1-carboxylic acid (ACC), a biosynthetic precursor of ethylene, has long been proposed to act as a mobile messenger in higher plants. However, little is known about the transport system of ACC. Recently, our genetic characterization of an ACC-resistant mutant with normal ethylene sensitivity revealed that lysine histidine transporter 1 (LHT1) functions as a transporter of ACC. As amino acid transporters might have broad substrate specificity, we hypothesized that other amino acid transporters including LHT1 paralogs might have the ACC-transporter activity. Here, we took a gain-of-function approach by transgenic complementation of lht1 mutant with a selected set of amino acid transporters. When we introduced transgene into the lht1 mutant, the transgenic expression of LHT2, but not of LHT3 or amino acid permease 5 (AAP5), restored the ACC resistance phenotype of the lht1 mutant. The result provides genetic evidence that some, if not all, amino acid transporters in Arabidopsis can function as ACC transporters. In support, when expressed in Xenopus laevis oocytes, both LHT1 and LHT2 exhibited ACC-transporting activity, inducing inward current upon addition of ACC. Interestingly, the transgenic expression of LHT2, but not of LHT3 or AAP5, could also suppress the early senescence phenotypes of the lht1 mutant. Taking together, we propose that plants have evolved a multitude of ACC transporters based on amino acid transporters, which would contribute to the differential distribution of ACC under various spatiotemporal contexts.

4.
Mol Cells ; 36(1): 88-96, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23740431

RESUMO

Ethylene controls myriad aspects of plant growth throughout developmental stages in higher plants. It has been well established that ethylene-responsive growth entails extensive crosstalk with other plant hormones, particularly auxin. Here, we report a genetic mutation, named 1-aminocyclopropane carboxylic acid (ACC) resistant root1-1 (are1-1) in Arabidopsis thaliana (L.) Heynh. The CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) encodes a Raf-related protein, functioning as an upstream negative regulator of ethylene signaling in Arabidopsis thaliana. We found that the ctr1-1, a kinase-inactive allele exhibited slightly, but significantly, longer root length, compared to ACC-treated wild-type or ctr1-3, a null allele. Our genetic studies unveiled the existence of are1-1 mutation in the ctr1-1 mutant, as a second-site modifier which confers root-specific ethylene-resistance. Based on well-characterized crosstalk between ethylene and auxin during ethylene-responsive root growth, we performed various physiological analyses. Whereas are1-1 displayed normal sensitivity to synthetic auxins, it showed modest resistance to an auxin transport inhibitor, 1-Nnaphthylphthalamic acid. In addition, are1-1 mutant exhibited ectopically altered DR5:GUS activity upon ethylenetreatment. The results implicated the involvement of are1-1 in auxin-distribution, but not in auxin-biosynthesis, -uptake, or -sensitivity. In agreement, are1-1 mutant exhibited reduced gravitropic root growth and defective redistribution of DR5:GUS activity upon gravi-stimulation. Taken together with genetic and molecular analysis, our results suggest that ARE1 defines a novel locus to control ethylene-responsive root growth as well as gravitropic root growth presumably through auxin distribution in Arabidopsis thaliana.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Etilenos/farmacologia , Genes Supressores , Gravitropismo/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Quinases/genética , Alelos , Arabidopsis/efeitos dos fármacos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Gravitropismo/genética , Ácidos Indolacéticos/farmacologia , Mutação/genética , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Quinases/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
5.
Plant Sci ; 208: 20-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23683925

RESUMO

Flowering on time is a critically important for successful reproduction of plants. Here we report an early-flowering mutant in Arabidopsis thaliana, accelerated flowering 1-1D (afl1-1D) that exhibited pleiotropic developmental defects including semi-dwarfism, curly leaf, and increased branching. Genetic analysis showed that afl1-1D mutant is a single, dominant mutant. Chromosomal mapping indicates that AFL1 resides at the middle of chromosome 4, around which no known flowering-related genes have been characterized. Expression analysis and double mutant studies with late flowering mutants in various floral pathways indicated that elevated FT is responsible for the early-flowering of afl1-1D mutant. Interestingly, not only flowering-related genes, but also several floral homeotic genes were ectopically overexpressed in the afl1-1D mutants in both FT-dependent and -independent manner. The degree of histone H3 Lys27-trimethylation (H3K27me3) was reduced in several chromatin including FT, FLC, AG and SEP3 in the afl1-1D, suggesting that afl1-1D might be involved in chromatin modification. In support, double mutant analysis of afl1-1D and lhp1-4 revealed epistatic interaction between afl1-1D and lhp1-4 in regard to flowering control. Taken together, we propose that AFL1 regulate various aspect of development through chromatin modification, particularly associated with H3K27me3 in A. thaliana.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cromatina/metabolismo , Loci Gênicos/genética , Histonas/metabolismo , Lisina/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Epistasia Genética , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Pleiotropia Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Metilação , Mutação/genética , Fenótipo , Mapeamento Físico do Cromossomo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA