Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175963

RESUMO

Precision oncology, also known as personalized medicine, is an evolving approach to cancer treatment that aims to tailor therapies to individual patients based on their unique molecular profile, including genetic alterations and other biomarkers [...].


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores , Oncologia , Biomarcadores Tumorais
2.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445612

RESUMO

Wound healing is a complex process involving cell proliferation, migration, and extracellular matrix (ECM) remodeling. Extracellular vesicles (EVs) or exosomes derived from adipose tissue-derived stem cells (ASCs) are emerging as promising alternatives to cell therapy for advanced wound healing. Hyaluronic acid (HA), a major component of the skin ECM, is widely utilized in wound dressings and dermal fillers. This study aimed to investigate the effects of ASC-derived exosomes (ASC-EXOs) on human dermal fibroblasts (HDFs) and their potential combination with HA in in vivo wound healing and dermal filler models. In HDFs, ASC-EXOs increased cell proliferation and migration. ASC-EXOs also upregulated the expression of genes involved in cell proliferation and wound healing while stimulating collagen production in HDFs. In a porcine wound healing model, topical treatment with a combination of HA and ASC-EXOs led to higher wound closure rates compared to HA alone. Histological examination showed increased re-epithelialization and collagen type III deposition in wounds treated with the combination of HA and ASC-EXOs. In a mouse dermal filler model, tissues injected with the combination of HA and ASC-EXOs exhibited thicker tissue layers, increased vascularization, enhanced infiltration of myofibroblasts, and higher levels of collagen III and collagen fiber content compared to HA alone. These findings suggest that ASC-EXOs have beneficial effects on cell proliferation, migration, and gene expression related to wound healing, and they may accelerate wound closure and promote tissue regeneration. Furthermore, the combination of HA and ASC-EXOs may enhance wound healing and tissue remodeling, indicating its potential for both clinical and regenerative aesthetic applications in skin repair and regeneration.


Assuntos
Preenchedores Dérmicos , Exossomos , Células-Tronco Mesenquimais , Camundongos , Humanos , Animais , Suínos , Exossomos/metabolismo , Preenchedores Dérmicos/metabolismo , Cicatrização/genética , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo , Colágeno/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499154

RESUMO

Colorectal cancer (CRC) is an inflammation-associated common cancer worldwide. Paejang-san and Mori Cortex Radicis have been traditionally used for treating intestinal inflammatory diseases in Korea and China. In the present study, we developed a new herbal formula as an alternative to CRC treatments, which is composed of two main components of Paejangsan (Patriniae Radix (Paejang in Korean) and Coix Seed (Yiyiin in Korean)), and Mori Cortex Radicis (Sangbekpi in Korean) based on the addition and subtraction theory in traditional medicine, hence the name PSY, and explored the potential therapeutic effects of the new formula PSY in human CRC cells by analyzing viability, cell cycle and apoptosis. We found that PSY ethanol extract (EtOH-Ex), but not water extract, significantly suppressed the viability of human CRC cells, and synergistically decreased the cell proliferation compared to each treatment of Patriniae Radix and Coix Seed extract (PY) or Mori Cortex Radicis extract (S), suggesting the combination of PY and S in a 10-to-3 ratio for the formula PSY. PSY EtOH-Ex in the combination ratio reduced cell viability but induced cell cycle arrest at the G2/M and sub-G1 phases as well as apoptosis in CRC cells. In addition, the experimental results of Western blotting, immunofluorescence staining and reporter assays showed that PSY also inhibited STAT3 by reducing its phosphorylation and nuclear localization, which resulted in lowering STAT3-mediated transcriptional activation. In addition, PSY regulated upstream signaling molecules of STAT3 by inactivating JAK2 and Src and increasing SHP1. Moreover, the chemical profiles of PSY from UPLC-ESI-QTOF MS/MS analysis revealed 38 phytochemicals, including seven organic acids, eight iridoids, two lignans, twelve prenylflavonoids, eight fatty acids, and one carbohydrate. Furthermore, 21 potentially bioactive compounds were highly enriched in the PSY EtOH-Ex compared to the water extract. Together, these results indicate that PSY suppresses the proliferation of CRC cells by inhibiting the STAT3 signaling pathway, suggesting PSY as a potential therapeutic agent for treating CRC and 21 EtOH-Ex-enriched phytochemicals as anti-cancer drug candidates which may act by inhibiting STAT3.


Assuntos
Neoplasias Colorretais , Espectrometria de Massas em Tandem , Humanos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Antineoplásicos Fitogênicos/farmacologia
4.
IUBMB Life ; 73(10): 1222-1234, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34273236

RESUMO

Ginkgolide C (GGC), isolated from Ginkbiloba, has been reported to display various pharmacological actions, although, anti-cancer effect of GGC has been poorly understood till now. This study aimed to investigate whether GGC can exhibit anti-neoplastic effects against colon cancer cells and explore underlying mechanism. The Wnt/ß-catenin signaling can regulate cell proliferation, survival, metastasis, and migration. Wnt/ß-catenin signaling pathway plays important role in colorectal cancer (CRC) and acts as a potential therapeutic target. Abnormal activation of this signaling cascades has been reported in colon CRC. We found that GGC down-regulated Wnt/ß-catenin signaling cascade. GGC inhibited the expression of Wnt3a, ß-catenin, and ß-catenin down-stream signals (Axin-1, p-GSK3ß, and ß-TrCP). Also, GGC suppressed the expression of Wnt/ß-catenin pathway target genes including c-myc, cyclin D1, and survivin. Additionally, GGC induced apoptosis and suppressed cell proliferation, invasion, and migration. GGC down-regulated the expressions of matrix metalloproteinase (MMP)-9 and MMP-2 proteins. Moreover, silencing of ß-catenin by small interfering RNA (siRNA) enhanced the GGC-induced apoptosis and inhibitory action of GGC on invasion. Overall, our results indicate that GGC can reduce proliferation and promote apoptosis in colon cancer cells through inhibition of the Wnt/ß-catenin signaling pathway. Thus, GGC can serve as a potent therapeutic agent for management of colon cancer as a novel wnt signaling inhibitor.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Ginkgolídeos/farmacologia , Lactonas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
5.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008473

RESUMO

Ribosomal protein S6 (RPS6) is a component of the 40S small ribosomal subunit and participates in the control of mRNA translation. Additionally, phospho (p)-RPS6 has been recognized as a surrogate marker for the activated PI3K/AKT/mTORC1 pathway, which occurs in many cancer types. However, downstream mechanisms regulated by RPS6 or p-RPS remains elusive, and the therapeutic implication of RPS6 is underappreciated despite an approximately half a century history of research on this protein. In addition, substantial evidence from RPS6 knockdown experiments suggests the potential role of RPS6 in maintaining cancer cell proliferation. This motivates us to investigate the current knowledge of RPS6 functions in cancer. In this review article, we reviewed the current information about the transcriptional regulation, upstream regulators, and extra-ribosomal roles of RPS6, with a focus on its involvement in cancer. We also discussed the therapeutic potential of RPS6 in cancer.


Assuntos
Neoplasias/metabolismo , Proteína S6 Ribossômica/metabolismo , Animais , Proliferação de Células/fisiologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
6.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360911

RESUMO

Pyrimethamine (Pyri) is being used in combination with other medications to treat serious parasitic infections of the body, brain, or eye and to also reduce toxoplasmosis infection in the patients with HIV infection. Additionally, Pyri can display significant anti-cancer potential in different tumor models, but the possible mode of its actions remains unclear. Hence, in this study, the possible anti-tumoral impact of Pyri on human chronic myeloid leukemia (CML) was deciphered. Pyri inhibited cell growth in various types of tumor cells and exhibited a marked inhibitory action on CML cells. In addition to apoptosis, Pyri also triggered sustained autophagy. Targeted inhibition of autophagy sensitized the tumor cells to Pyri-induced apoptotic cell death. Moreover, the activation of signal transducer and activator of transcription 5 (STAT5) and its downstream target gene Bcl-2 was attenuated by Pyri. Accordingly, small interfering RNA (siRNA)-mediated STAT5 knockdown augmented Pyri-induced autophagy and apoptosis and promoted the suppressive action of Pyri on cell viability. Moreover, ectopic overexpression of Bcl-2 protected the cells from Pyri-mediated autophagy and apoptosis. Overall, the data indicated that the attenuation of STAT5-Bcl-2 cascade by Pyri can regulate its growth inhibitory properties by simultaneously targeting both apoptosis and autophagy cell death mechanism(s).


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Pirimetamina/farmacologia , Apoptose/genética , Autofagia/genética , Proteína 7 Relacionada à Autofagia/deficiência , Proteína 7 Relacionada à Autofagia/genética , Proteína Beclina-1/deficiência , Proteína Beclina-1/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Técnicas de Silenciamento de Genes , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição STAT5/deficiência , Fator de Transcrição STAT5/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células THP-1 , Transfecção , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
7.
8.
Cell Biochem Funct ; 38(2): 167-175, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31782179

RESUMO

TREK-1 (TWIK-related K+ channel), a member of the two-pore domain K+ (K2P) channel family, is highly expressed in astrocytes, where it plays a key role in glutamate release and passive conductance. In addition, TREK-1 is induced to protect neurons under pathological conditions such as hypoxia. However, the upstream regulation of TREK-1 remains poorly understood. In this study, we found that AEG-1 (astrocyte elevated gene-1) regulates the expression of astrocytic TREK-1 under hypoxic conditions. Upregulation of AEG-1 increased expression of TREK-1 in astrocytes, and knockdown of AEG-1 dramatically decreased the mRNA and protein levels of TREK-1, which were restored by expression of shRNA-insensitive AEG-1. In addition, expression of TREK-1 was not regulated in the absence of AEG-1, even when HIF1α was present. Together, these results suggest that AEG-1 acts as a major upstream regulator of TREK-1 channels in astrocytes under hypoxia. SIGNIFICANCE OF THE STUDY: Previous studies have reported that hypoxia increases the expression of astrocytic TREK-1 and that increased TREK-1 expression protects neuronal cells from apoptosis. However, its cellular mechanism is not clear. In this study we first showed that AEG-1 is a major mediator of hypoxic-regulated TREK-1 expression in normal astrocytes independently of HIF-1α.


Assuntos
Astrócitos/metabolismo , Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Apoptose , Astrócitos/citologia , Eletroporação , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neurônios/metabolismo , RNA Mensageiro/metabolismo
9.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906784

RESUMO

The root bark of Morus has long been appreciated as an antiphlogistic, diuretic and expectorant drug in Chinese herbal medicine, albeit with barely known targets and mechanisms of action. In the 1970s, the development of analytic chemistry allowed for the discovery of morusin as one of 7 different isoprene flavonoid derivatives in the root bark of Morus. However, the remarkable antioxidant capacity of morusin with the unexpected potential for health benefits over the other flavonoid derivatives has recently sparked scientific interest in the biochemical identification of target proteins and signaling pathways and further clinical relevance. In this review, we discuss recent advances in the understanding of the functional roles of morusin in multiple biological processes such as inflammation, apoptosis, metabolism and autophagy. We also highlight recent in vivo and in vitro evidence on the clinical potential of morusin treatment for multiple human pathologies including inflammatory diseases, neurological disorders, diabetes, cancer and the underlying mechanisms.


Assuntos
Flavonoides/metabolismo , Flavonoides/farmacologia , Morus/metabolismo , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Butadienos/química , Flavonoides/química , Hemiterpenos/química , Humanos , Inflamação/tratamento farmacológico , Casca de Planta/metabolismo , Extratos Vegetais/farmacologia , Raízes de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
10.
Molecules ; 25(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517053

RESUMO

Papaver nudicaule L. (Iceland poppy) is widely used for ornamental purposes. A previous study demonstrated the alleviation of lipopolysaccharide-induced inflammation mediated by P. nudicaule extract through nuclear factor-kappa B and signal transducer and activator of transcription 3 inactivation. As isoquinoline alkaloids are chemical markers and bioactive constituents of Papaver species, the present study investigated the alkaloid profile of aerial parts of five P. nudicaule cultivars with different flower colors and a P. rhoeas cropped for two years. A combination of liquid chromatography high-resolution mass spectrometry and molecular networking was used to cluster isoquinoline alkaloids in the species and highlight the possible metabolites. Aside from the 12 compounds, including rotundine, muramine, and allocryptopine, identified from Global Natural Products Social library and reported information, 46 structurally related metabolites were quantitatively investigated. Forty-two and 16 compounds were proposed for chemical profiles of P. nudicaule and P. rhoeas, respectively. Some species-specific metabolites showed similar fragmentation patterns. The alkaloid abundance of P. nudicaule differed depending on the flower color, and the possible chemical markers were proposed. These results show that molecular networking-guided dereplication allows investigation of unidentified metabolites. The derived chemical profile may facilitate evaluation of P. nudicaule quality for pharmacological applications.


Assuntos
Alcaloides/análise , Cromatografia Líquida/métodos , Isoquinolinas/análise , Papaver/química , Papaver/metabolismo , Extratos Vegetais/análise , Espectrometria de Massas em Tandem/métodos , Estrutura Molecular , Papaver/classificação
11.
J Cell Physiol ; 234(10): 18249-18261, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30851074

RESUMO

Epidemiological evidence suggests that obesity can significantly increase the risk of various cancers, although the mechanisms underlying this link are completely unknown. Here, we analyzed the effect of adipocytes on melanoma and colon cancer cells proliferation, migration, and invasion. The potential effects of conditioned media (CM) obtained from differentiated mouse 3T3-L1 cells and human adipose tissue-derived mesenchymal stem cells (hAMSC) on the proliferation, migration, and invasion of B16BL6 melanoma and colon 26-L5 cancer cells were investigated. The 3T3-L1 and hAMSC CM increased cell proliferation, migration, and invasion in both the cell lines. In addition, adipocytes CM increased matrix metalloproteinase 9 (MMP-9) and MMP-2 activity in both B16BL6 and colon 26-L5 cells. These effects were found to be associated with an increased expression of various oncogenic proteins in B16BL6 and colon 26-L5 cells. Also, adipocyte CM induced Akt and mTOR activation in both tumor cell lines, and the pharmacological inhibition of Akt and mTOR blocked the CM induced Akt as well as mTOR activation and CM-stimulated melanoma and colon cancer cell proliferation, migration, and invasion. These data suggest that adipocyte promotes melanoma and colon cancer progression through modulating the expression of diverse proteins associated with cancer growth and metastasis as well as modulation of the Akt/mTOR signaling.


Assuntos
Adipócitos/patologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Neoplasias Colorretais/patologia , Meios de Cultivo Condicionados/metabolismo , Melanoma Experimental/patologia , Invasividade Neoplásica/patologia , Células 3T3-L1 , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias Colorretais/metabolismo , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Melanoma Experimental/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
12.
FASEB J ; 32(3): 1388-1402, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29141998

RESUMO

Energy expenditure is a target gaining recent interest for obesity treatment. The antiobesity effect of vanillic acid (VA), a well-known flavoring agent, was investigated in vivo and in vitro. High-fat diet (HFD)-induced obese mice and genetically obese db/db mice showed significantly decreased body weights after VA administration. Two major adipogenic markers, peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), were reduced while the key factor of energy metabolism, AMPKα, was increased in the white adipose tissue and liver tissue of VA-treated mice. Furthermore, VA inhibited lipid accumulation and reduced hepatotoxic/inflammatory markers in liver tissues of mice and HepG2 hepatocytes. VA treatment also decreased differentiation of 3T3-L1 adipocytes by regulating adipogenic factors including PPARγ and C/EBPα. AMPKα small interfering RNA was used to examine whether AMPK was associated with the actions of VA. In AMPKα-nulled 3T3-L1 cells, the inhibitory action of VA on PPARγ and C/EBPα was attenuated. Furthermore, in brown adipose tissues of mice and primary cultured brown adipocytes, VA increased mitochondria- and thermogenesis-related factors such as uncoupling protein 1 and PPARγ-coactivator 1-α. Taken together, our results suggest that VA has potential as an AMPKα- and thermogenesis-activating antiobesity agent.-Jung, Y., Park, J., Kim, H.-L., Sim, J.-E., Youn, D.-H., Kang, J., Lim, S., Jeong, M.-Y., Yang, W. M., Lee, S.-G., Ahn, K. S., Um, J.-Y. Vanillic acid attenuates obesity via activation of the AMPK pathway and thermogenic factors in vivo and in vitro.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Obesidade/tratamento farmacológico , Termogênese/efeitos dos fármacos , Ácido Vanílico/farmacologia , Células 3T3-L1 , Tecido Adiposo Marrom/patologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Ativação Enzimática/efeitos dos fármacos , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/patologia , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
13.
BMC Complement Altern Med ; 19(1): 90, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036001

RESUMO

BACKGROUND: Papaver nudicaule belongs to the Papaveraceae family, which is planted as an annual herbaceous species generally for ornamental purpose. Papaver rhoeas in the same family has been reported to have various pharmacological activities such as antioxidant and analgesic effects. In contrast, little is known about the pharmacological activity of Papaver nudicaule. In this study, the anti-inflammatory activity of Papaver nudicaule extracts and the action mechanisms were investigated in RAW264.7 macrophage cells. METHODS: To investigate the anti-inflammatory activity of five cultivars of Papaver nudicaule with different flower color, samples were collected from their aerial parts at two growth stages (60 and 90 days) and their ethanol extracts were evaluated in the lipopolysaccharide (LPS)-treated RAW264.7 cells by measuring nitric oxide (NO) and prostaglandin E2 (PGE2) levels. Interleukin 1-beta (IL-1ß), Interleukin-6 (IL-6) and Tumor necrosis factor alpha (TNF-α) production were also analyzed by RT-PCR and multiplex assays. Nuclear Factor-kappa-light-chain-enhancer of activated B cells (NF-κB) and Signal transducer and activator of transcription 3 (STAT3) signaling pathways were examined using western blotting and luciferase reporter assays to reveal the action mechanism of Papaver nudicaule extracts in their anti-inflammatory activity. RESULTS: All of the Papaver nudicaule extracts were effective in reducing the LPS-induced NO, which is an important inflammatory mediator, and the extract of Papaver nudicaule with white flower collected at 90 days (NW90) was selected for further experiments because of the best effect on reducing the LPS-induced NO as well as no toxicity. NW90 lowered the LPS-induced PGE2 level and decreased the LPS-induced Nitric oxide synthase 2 (NOS2) and Cyclooxygenase 2 (COX2). In addition, NW90 reduced the LPS-induced inflammatory cytokines, IL-1ß and IL-6. Furthermore, NW90 inhibited the LPS-induced activation of NF-κB and STAT3. CONCLUSIONS: These results indicate that NW90 may restrain inflammation by inhibiting NF-κB and STAT3, suggesting the potential therapeutic properties of Papaver nudicaule against inflammatory disease.


Assuntos
Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Papaver/química , Extratos Vegetais/farmacologia , Fator de Transcrição STAT3/metabolismo , Animais , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Inflamação/induzido quimicamente , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
14.
Int J Mol Sci ; 20(23)2019 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-31771312

RESUMO

TWIK-related potassium channel-1 (TREK-1) is broadly expressed in the brain and involved in diverse brain diseases, such as seizures, ischemia, and depression. However, the cell type-specific roles of TREK-1 in the brain are largely unknown. Here, we generated a Cre-dependent TREK-1 knockdown (Cd-TREK-1 KD) transgenic mouse containing a gene cassette for Cre-dependent TREK-1 short hairpin ribonucleic acid to regulate the cell type-specific TREK-1 expression. We confirmed the knockdown of TREK-1 by injecting adeno-associated virus (AAV) expressing Cre into the hippocampus of the mice. To study the role of hippocampal neuronal TREK-1 in a lipopolysaccharide (LPS)-induced depression model, we injected AAV-hSyn-BFP (nCTL group) or AAV-hSyn-BFP-Cre (nCre group) virus into the hippocampus of Cd-TREK-1 KD mice. Interestingly, the immobility in the tail suspension test after LPS treatment did not change in the nCre group. Additionally, some neurotrophic factors (BDNF, VEGF, and IGF-1) significantly increased more in the nCre group compared to the nCTL group after LPS treatment, but there was no difference in the expression of their receptors. Therefore, our data suggest that TREK-1 in the hippocampal neurons has antidepressant effects, and that Cd-TREK-1 KD mice are a valuable tool to reveal the cell type-specific roles of TREK-1 in the brain.


Assuntos
Transtorno Depressivo/etiologia , Hipocampo/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Animais , Comportamento Animal/efeitos dos fármacos , Corticosterona/sangue , Citocinas/genética , Citocinas/metabolismo , Giro Denteado/metabolismo , Dependovirus/genética , Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Transgênicos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
15.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847234

RESUMO

Endoplasmic reticulum (ER) stress is known to influence various cellular functions, including cell cycle progression. Although it is well known how ER stress inhibits cell cycle progression at the G1 phase, the molecular mechanism underlying how ER stress induces G2/M cell cycle arrest remains largely unknown. In this study, we found that ER stress and subsequent induction of the UPR led to cell cycle arrest at the G2/M phase by reducing the amount of cyclin B1. Pharmacological inhibition of the IRE1α or ATF6α signaling did not affect ER stress-induced cell cycle arrest at the G2/M phase. However, when the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation was genetically abrogated, the cell cycle progressed without arresting at the G2/M phase after ER stress. GEO database analysis showed that growth arrest and DNA-damage-inducible protein α (Gadd45α) were induced in an eIF2a phosphorylation-dependent manner, which was confirmed in this study. Knockdown of GADD45α abrogated cell cycle arrest at the G2/M phase upon ER stress. Finally, the cell death caused by ER stress significantly reduced when GADD45α expression was knocked down. In conclusion, GADD45α is a key mediator of ER stress-induced growth arrest via regulation of the G2/M transition and cell death through the eIF2α signaling pathway.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Transdução de Sinais , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , Ciclina B1/metabolismo , Bases de Dados Genéticas , Fator de Iniciação 2 em Eucariotos/genética , Humanos , Fosforilação
16.
Ann Neurol ; 82(3): 466-478, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28856709

RESUMO

OBJECTIVE: Rett syndrome (RTT) and epileptic encephalopathy (EE) are devastating neurodevelopmental disorders with distinct diagnostic criteria. However, highly heterogeneous and overlapping clinical features often allocate patients into the boundary of the two conditions, complicating accurate diagnosis and appropriate medical interventions. Therefore, we investigated the specific molecular mechanism that allows an understanding of the pathogenesis and relationship of these two conditions. METHODS: We screened novel genetic factors from 34 RTT-like patients without MECP2 mutations, which account for ∼90% of RTT cases, by whole-exome sequencing. The biological function of the discovered variants was assessed in cell culture and Xenopus tropicalis models. RESULTS: We identified a recurring de novo variant in GABAB receptor R2 (GABBR2) that reduces the receptor function, whereas different GABBR2 variants in EE patients possess a more profound effect in reducing receptor activity and are more responsive to agonist rescue in an animal model. INTERPRETATION: GABBR2 is a genetic factor that determines RTT- or EE-like phenotype expression depending on the variant positions. GABBR2-mediated γ-aminobutyric acid signaling is a crucial factor in determining the severity and nature of neurodevelopmental phenotypes. Ann Neurol 2017;82:466-478.


Assuntos
Mutação , Receptores de GABA-B/genética , Síndrome de Rett/genética , Espasmos Infantis/genética , Exoma , Genótipo , Células HEK293 , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Fenótipo , Transdução de Sinais/genética
17.
J Sep Sci ; 41(12): 2517-2527, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29607619

RESUMO

Papaver plants can produce diverse bioactive alkaloids. Papaver rhoeas Linnaeus (common poppy or corn poppy) is an annual flowering medicinal plant used for treating cough, sleep disorder, and as a sedative, pain reliever, and food. It contains various powerful alkaloids like rhoeadine, benzylisoquinoline, and proaporphine. To investigate and identify alkaloids in the aerial parts of P. rhoeas, samples were collected at different growth stages and analyzed using liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. A liquid chromatography with mass spectrometry method was developed for the identification and metabolite profiling of alkaloids for P. rhoeas by comparing with Papaver somniferum. Eighteen alkaloids involved in benzylisoquinoline alkaloid biosynthesis were used to optimize the liquid chromatography gradient and mass spectrometry conditions. Fifty-five alkaloids, including protoberberine, benzylisoquinoline, aporphine, benzophenanthridine, and rhoeadine-type alkaloids, were identified authentically or tentatively by liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry in samples taken during various growth stages. Rhoeadine alkaloids were observed only in P. rhoeas samples, and codeine and morphine were tentatively identified in P. somniferum. The liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry method can be a powerful tool for the identification of diverse metabolites in the genus Papaver. These results may help understand the biosynthesis of alkaloids in P. rhoeas and evaluate the quality of this plant for possible medicinal applications.


Assuntos
Alcaloides/química , Cromatografia Líquida/métodos , Papaver/química , Extratos Vegetais/química , Espectrometria de Massas em Tandem/métodos , Componentes Aéreos da Planta/química , Plantas Medicinais/química
18.
Int J Mol Sci ; 19(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332811

RESUMO

The Papaver spp. (Papaver rhoeas (Corn poppy) and Papaver nudicaule (Iceland poppy)) genera are ornamental and medicinal plants that are used for the isolation of alkaloid drugs. In this study, we generated 700 Mb of transcriptome sequences with the PacBio platform. They were assembled into 120,926 contigs, and 1185 (82.2%) of the benchmarking universal single-copy orthologs (BUSCO) core genes were completely present in our assembled transcriptome. Furthermore, using 128 Gb of Illumina sequences, the transcript expression was assessed at three stages of Papaver plant development (30, 60, and 90 days), from which we identified 137 differentially expressed transcripts. Furthermore, three co-occurrence heat maps are generated from 51 different plant genomes along with the Papaver transcriptome, i.e., secondary metabolite biosynthesis, isoquinoline alkaloid biosynthesis (BIA) pathway, and cytochrome. Sixty-nine transcripts in the BIA pathway along with 22 different alkaloids (quantified with LC-QTOF-MS/MS) were mapped into the BIA KEGG map (map00950). Finally, we identified 39 full-length cytochrome transcripts and compared them with other genomes. Collectively, this transcriptome data, along with the expression and quantitative metabolite profiles, provides an initial recording of secondary metabolites and their expression related to Papaver plant development. Moreover, these profiles could help to further detail the functional characterization of the various secondary metabolite biosynthesis and Papaver plant development associated problems.


Assuntos
Perfilação da Expressão Gênica , Papaver/genética , Plantas Medicinais/genética , Vias Biossintéticas/genética , Citocromos/genética , Citocromos/metabolismo , Regulação da Expressão Gênica de Plantas , Isoquinolinas/metabolismo , Anotação de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metabolismo Secundário/genética
19.
Molecules ; 23(3)2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29522451

RESUMO

Embelin is a naturally-occurring benzoquinone compound that has been shown to possess many biological properties relevant to human cancer prevention and treatment, and increasing evidence indicates that embelin may modulate various characteristic hallmarks of tumor cells. This review summarizes the information related to the various oncogenic pathways that mediate embelin-induced cell death in multiple cancer cells. The mechanisms of the action of embelin are numerous, and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and modulate the NF-κB, p53, PI3K/AKT, and STAT3 signaling pathways. Embelin also induces autophagy in cancer cells; however, these autophagic cell-death mechanisms of embelin have been less reported than the apoptotic ones. Recently, several autophagy-inducing agents have been used in the treatment of different human cancers, although they require further exploration before being transferred from the bench to the clinic. Therefore, embelin could be used as a potential agent for cancer therapy.


Assuntos
Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia , Benzoquinonas/química , Produtos Biológicos/química , Sinergismo Farmacológico , Humanos , Neoplasias/metabolismo , Oxirredução/efeitos dos fármacos , Transdução de Sinais
20.
J Cell Physiol ; 232(2): 346-354, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27177359

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a critical cellular phenomenon regulating tumor metastases. In the present study, we investigated whether ginkgolic acid can affect EMT in lung cancer cells and the related underlying mechanism(s) of its actions. We found that ginkgolic acid C15:1 (GA C15:1) inhibited cell proliferation, invasion, and migration in both A549 and H1299 lung cancer cells. GA C15:1 also suppressed the expression of EMT related genes (Fibronectin, Vimentin, N-cadherin, MMP-9, MMP-2, Twist and Snail) and suppressed TGF-ß-induced EMT as assessed by reduced expression of mesenchymal markers (Fibronectin, Vimentin, N-cadherin), MMP-9, MMP-2, Twist and Snail. However, GA C15:1 did not affect the expression of various epithelial marker proteins (Occludin and E-cadherin) in both A549 and H1299 cells. TGF-ß-induced morphologic changes from epithelial to mesenchymal cells and induction of invasion and migration were reversed by GA C15:1. Finally, GA C15:1 not only abrogated basal PI3K/Akt/mTOR signaling cascade, but also reduced TGF-ß-induced phosphorylation of PI3K/Akt/mTOR pathway in lung cancer cells. Overall, these findings suggest that GA C15:1 suppresses lung cancer invasion and migration through the inhibition of PI3K/Akt/mTOR signaling pathway and provide a source of potential therapeutic compounds to control the metastatic dissemination of tumor cells. J. Cell. Physiol. 232: 346-354, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Salicilatos/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Salicilatos/química , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA