Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biochem Biophys Res Commun ; 710: 149860, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604070

RESUMO

Schizophyllan (SPG), a ß-glucan from Schizophyllum commune, is recognized for its antioxidant, immunoregulatory, and anticancer activities. In this study, its effects on bone cells, particularly osteoclasts and osteoblasts, were examined. We demonstrated that SPG dose-dependently inhibited osteoclastogenesis and reduced gene expression associated with osteoclast differentiation. SPG also decreased bone resorption and F-actin ring formation. This inhibition could have been due to the downregulation of transcription factors c-Fos and nuclear factor of activated T cells 1 (NFATc1) via the MAPKs (JNK and p38), IκBα, and PGC1ß/PPARγ pathways. In coculture, SPG lowered osteoclastogenic activity in calvaria-derived osteoblasts by reducing macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) expression. In addition, SPG slightly enhanced osteoblast differentiation, as evidenced by increased differentiation marker gene expression and alizarin red staining. It also exhibited antiresorptive effects in a lipopolysaccharide-induced calvarial bone loss model. These results indicated a dual role of SPG in bone cell regulation by suppressing osteoclastogenesis and promoting osteoblast differentiation. Thus, SPG could be a therapeutic agent for bone resorption-related diseases such as osteoporosis, rheumatoid arthritis, and periodontitis.


Assuntos
Reabsorção Óssea , Sizofirano , Humanos , Osteoclastos/metabolismo , Sizofirano/metabolismo , Sizofirano/farmacologia , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/metabolismo , Diferenciação Celular , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Osteogênese , Ligante RANK/metabolismo
2.
Biochem Biophys Res Commun ; 646: 1-7, 2023 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36689911

RESUMO

After peripheral nerve injury, demyelinating Schwann cells discharge myelin debris and macrophages execute myelin degradation, leading to demyelination of degenerating axons, which is essential for efficient nerve regeneration. In this study, we show that vacuolar-type proton ATPase subunit d2 (Atp6v0d2) is among the most highly upregulated genes in degenerating mouse sciatic nerves after nerve injury using microarray analysis. ATP6V0D2 is mostly expressed in macrophages of injured nerves. Atp6v0d2 knockout mice display delayed peripheral nerve demyelination and significantly attenuated myelin lipid digestion after nerve injury. However, macrophage recruitment and Schwann cell dedifferentiation are unaffected by loss of Atp6v0d2 expression. Taken together, these data demonstrate that ATP6V0D2 in macrophages is specifically required for demyelination during Wallerian degeneration.


Assuntos
Doenças Desmielinizantes , Traumatismos dos Nervos Periféricos , ATPases Vacuolares Próton-Translocadoras , Camundongos , Animais , Traumatismos dos Nervos Periféricos/metabolismo , Adenosina Trifosfatases/metabolismo , Bainha de Mielina/metabolismo , Células de Schwann/metabolismo , Degeneração Walleriana , Nervo Isquiático/metabolismo , Camundongos Knockout , Doenças Desmielinizantes/metabolismo , Regeneração Nervosa , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
3.
J Immunol ; 196(3): 1123-31, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26695370

RESUMO

Rac1, a member of small GTPases, is a key regulator of osteoclast differentiation and function. The Crk family adaptor proteins, consisting of Src homology (SH) 2 and SH3 protein-binding domains, regulate cell proliferation, migration, and invasion through Rac1 activation. In this study, we examined the role of CrkII in osteoclast differentiation and function. Retroviral overexpression of CrkII in osteoclast precursors enhanced osteoclast differentiation and resorptive function through Rac1 activation. The knockdown of CrkII in osteoclast precursors using small interfering RNA inhibited osteoclast differentiation and its resorption activity. Unlike wild-type CrkII, overexpression of the three SH domains in mutant forms of CrkII did not enhance either osteoclast differentiation or function. Phosphorylation of p130 Crk-associated substrate (p130Cas) by osteoclastogenic cytokines in preosteoclasts increased the interaction between p130Cas and CrkII, which is known to be involved in Rac1 activation. Furthermore, transgenic mice overexpressing CrkII under control of a tartrate-resistant acid phosphatase promoter exhibited a low bone mass phenotype, associated with increased resorptive function of osteoclasts in vivo. Taken together, our data suggest that the p130Cas/CrkII/Rac1 signaling pathway plays an important role in osteoclast differentiation and function, both in vitro and in vivo.


Assuntos
Diferenciação Celular/fisiologia , Osteoclastos/fisiologia , Proteínas Proto-Oncogênicas c-crk/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Proteína Substrato Associada a Crk/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Transgênicos , Osteoclastos/citologia , Ligante RANK/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Microtomografia por Raio-X
4.
Biochem Biophys Res Commun ; 482(4): 1073-1079, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27913299

RESUMO

ß-lapachone (ß-L) is a substrate of reduced nicotinamide adenine dinucleotide (NADH): quinone oxidoreductase 1 (NQO1). NQO1 reduces quinones to hydroquinones using NADH as an electron donor and consequently increases the intracellular NAD+/NADH ratio. The activation of NQO1 by ß-L has beneficial effects on several metabolic syndromes, such as obesity, hypertension, and renal injury. However, the effect of ß-L on bone metabolism remains unclear. Here, we show that ß-L might be a potent inhibitor of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. ß-L inhibited osteoclast formation in a dose-dependent manner and also reduced the expression of osteoclast differentiation marker genes, such as tartrate-resistant acid phosphatase (Acp5 or TRAP), cathepsin K (CtsK), the d2 isoform of vacuolar ATPase V0 domain (Atp6v0d2), osteoclast-associated receptor (Oscar), and dendritic cell-specific transmembrane protein (Dc-stamp). ß-L treatment of RANKL-induced osteoclastogenesis significantly increased the cellular NAD+/NADH ratio and resulted in the activation of 5' AMP-activated protein kinase (AMPK), a negative regulator of osteoclast differentiation. In addition, ß-L treatment led to significant suppression of the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and peroxisome proliferator-activated receptor gamma coactivator 1ß (PGC1ß), which can stimulate osteoclastogenesis. ß-L treatment downregulated c-Fos and nuclear factor of activated T-cells 1 (NFATc1), which are master transcription factors for osteoclastogenesis. Taken together, the results demonstrated that ß-L inhibits RANKL-induced osteoclastogenesis and could be considered a potent inhibitor of RANKL-mediated bone diseases, such as postmenopausal osteoporosis, rheumatoid arthritis, and periodontitis.


Assuntos
Naftoquinonas/química , Osteoclastos/citologia , Ligante RANK/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Doenças Ósseas/metabolismo , Diferenciação Celular , Sobrevivência Celular , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , NAD/química , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Osteogênese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
5.
BMC Complement Altern Med ; 17(1): 164, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28335757

RESUMO

BACKGROUND: Sophorae Flos (SF) is a composite of flowers and buds of Styphnolobium japonicum (L.) Schott and has been used in traditional Korean and Chinese medicine for the treatment of hemostasis and inflammation. Previous studies reported that SF possesses anti-obesity properties, as well as anti-allergic, anti-proliferative, and anti-inflammatory activities. However, the effect of SF in bone resorption has not been studies. In this study, we examined the potential of SF extract (SFE) to inhibit receptor activator of NF-κB ligand (RANKL) -induced osteoclast differentiation in cultured mouse-derived bone marrow macrophages (BMMs). METHODS: BMMs, that act as osteoclast precursors, were cultured with M-CSF (50 ng/ml) and RANKL (100 ng/ml) for 4 days to generate osteoclasts. Osteoclast differentiation was measured by tartrate-resistant acidic phosphatase (TRAP) staining and the TRAP solution assay. Osteoclast differentiation marker genes were analyzed by the quantitative real-time polymerase chain reaction analysis. RANKLs signaling pathways were confirmed through western blotting. RESULTS: SFE significantly decreased osteoclast differentiation in a dose-dependent manner. SFE inhibited RANKL-induced osteoclastogenesis by suppressing NF-κB activation. By contrast, SFE did not affect phospholipase C gamma 2 or subsequent cAMP response element binding activation. SFE inhibited the RANKL-induced expression of nuclear factor of activated T cells c1 (NFATc1). CONCLUSIONS: SFE attenuated the RANKL-mediated induction of NF-κB through inhibition of IκBα phosphorylation, which contributed to inhibiting of RANKL-induced osteoclast differentiation through downregulation of NFATc1.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ligante RANK/metabolismo , Sophora/química , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Flores/química , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/genética , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/genética , Osteoclastos/citologia , Osteoclastos/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Biochem Biophys Res Commun ; 475(1): 125-32, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27179783

RESUMO

Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5' monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Malato Desidrogenase/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ligante RANK/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Camundongos Endogâmicos C57BL , Osteoclastos/citologia
7.
Int J Mol Sci ; 16(12): 29305-14, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26690137

RESUMO

Small G-protein adenosine diphosphate (ADP)-ribosylation factors (ARFs) regulate a variety of cellular functions, including actin cytoskeleton remodeling, plasma membrane reorganization, and vesicular transport. Here, we propose the functional roles of ARF1 in multiple stages of osteoclast differentiation. ARF1 was upregulated during receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation and transiently activated in an initial stage of their differentiation. Differentiation of ARF1-deficient osteoclast precursors into mature osteoclasts temporarily increased in pre-maturation stage of osteoclasts followed by reduced formation of mature osteoclasts, indicating that ARF1 regulates the osteoclastogenic process. ARF1 deficiency resulted in reduced osteoclast precursor proliferation and migration as well as increasing cell-cell fusion. In addition, ARF1 silencing downregulated c-Jun N-terminal kinase (JNK), Akt, osteopontin, and macrophage colony-stimulating factor (M-CSF)-receptor c-Fms as well as upregulating several fusion-related genes including CD44, CD47, E-cadherin, and meltrin-α. Collectively, we showed that ARF1 stimulated proliferation and migration of osteoclast precursors while suppressing their fusion, suggesting that ARF1 may be a plausible inter-player that mediates the transition to osteoclast fusion at multiple steps during osteoclast differentiation.


Assuntos
Fator 1 de Ribosilação do ADP/fisiologia , Diferenciação Celular , Movimento Celular , Proliferação de Células , Osteoclastos/fisiologia , Animais , Fusão Celular , Células Cultivadas , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais
8.
Nat Med ; 12(12): 1403-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17128270

RESUMO

Matrix-producing osteoblasts and bone-resorbing osteoclasts maintain bone homeostasis. Osteoclasts are multinucleated, giant cells of hematopoietic origin formed by the fusion of mononuclear pre-osteoclasts derived from myeloid cells. Fusion-mediated giant cell formation is critical for osteoclast maturation; without it, bone resorption is inefficient. To understand how osteoclasts differ from other myeloid lineage cells, we previously compared global mRNA expression patterns in these cells and identified genes of unknown function predominantly expressed in osteoclasts, one of which is the d2 isoform of vacuolar (H(+)) ATPase (v-ATPase) V(0) domain (Atp6v0d2). Here we show that inactivation of Atp6v0d2 in mice results in markedly increased bone mass due to defective osteoclasts and enhanced bone formation. Atp6v0d2 deficiency did not affect differentiation or the v-ATPase activity of osteoclasts. Rather, Atp6v0d2 was required for efficient pre-osteoclast fusion. Increased bone formation was probably due to osteoblast-extrinsic factors, as Atp6v02 was not expressed in osteoblasts and their differentiation ex vivo was not altered in the absence of Atp6v02. Our results identify Atp6v0d2 as a regulator of osteoclast fusion and bone formation, and provide genetic data showing that it is possible to simultaneously inhibit osteoclast maturation and stimulate bone formation by therapeutically targeting the function of a single gene.


Assuntos
Osteoclastos/fisiologia , Osteogênese/fisiologia , Bombas de Próton/genética , ATPases Vacuolares Próton-Translocadoras/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Fusão Celular , Células Cultivadas , Humanos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Isoformas de Proteínas , Estrutura Terciária de Proteína , Ligante RANK/farmacologia , ATPases Vacuolares Próton-Translocadoras/química
9.
J Clin Immunol ; 32(6): 1360-71, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22711011

RESUMO

PURPOSE: Osteoclasts (OCs) are multinucleated giant cells that resorb bone matrix. Accelerated bone destruction by OCs might cause several metabolic bone-related diseases, such as osteoporosis and inflammatory bone loss. D-pinitol (3-O-methyl-D-chiro-inositol) is a prominent component of dietary legumes and is actively converted to D-chiro-inositol, which is a putative insulin-like mediator. In this study, we analyzed the effect of D-chiro-inositol on OC differentiation. METHODS: To analyze the role of D-chiro-inositol on OC differentiation, we examined OC differentiation by the three types of osteoclastogenesis cultures with tartrate-resistant acid phosphatase (TRAP) staining and solution assay. Then, we carried out cell fusion assay with purified TRAP(+) mononuclear OC precursors. Finally, we analyzed the effect of D-chiro-inositol on OC maker expression in response to the regulation of nuclear factor of activated T cells c1 (NFATc1). RESULTS: We demonstrated that D-chiro-inositol acts as an inhibitor of receptor activator of NF-κB ligand-induced OC differentiation. The formation of multinucleated OCs by cell-cell fusion is reduced by treatment with D-chiro-inositol in a dose-dependent manner. In addition, we demonstrated that D-chiro-inositol inhibits the expression of several osteoclastogenic genes by down-regulating NFATc1. CONCLUSIONS: We have shown that D-chiro-inositol is negatively involved in osteoclastogenesis through the inhibition of multinucleated OC formation by cell-cell fusion. The expression of NFATc1 was significantly down-regulated by D-chiro-inositol in OCs and consequently, the expression of OC marker genes was significantly reduced. Hence, these results show that D-chiro-inositol might be a good candidate to treat inflammatory bone-related diseases or secondary osteoporosis in diabetes mellitus.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Células Gigantes/efeitos dos fármacos , Inositol/farmacologia , Fatores de Transcrição NFATC/genética , Osteoclastos/efeitos dos fármacos , Ligante RANK/genética , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fusão Celular , Linhagem Celular , Relação Dose-Resposta a Droga , Células Gigantes/patologia , Humanos , Inositol/análogos & derivados , Camundongos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Estereoisomerismo
11.
J Biol Chem ; 285(8): 5224-31, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20037154

RESUMO

The regulation of NFATc1 expression is important for osteoclast differentiation and function. Herein, we demonstrate that macrophage-colony-stimulating factor induces NFATc1 degradation via Cbl proteins in a Src kinase-dependent manner. NFATc1 proteins are ubiquitinated and rapidly degraded during late stage osteoclastogenesis, and this degradation is mediated by Cbl-b and c-Cbl ubiquitin ligases in a Src-dependent manner. In addition, NFATc1 interacts endogenously with c-Src, c-Cbl, and Cbl-b in osteoclasts. Overexpression of c-Src induces down-regulation of NFATc1, and depletion of Cbl proteins blocks NFATc1 degradation during late stage osteoclastogenesis. Taken together, our data provide a negative regulatory mechanism by which macrophage-colony-stimulating factor activates Src family kinases and Cbl proteins, and subsequently, induces NFATc1 degradation during osteoclast differentiation.


Assuntos
Diferenciação Celular/fisiologia , Regulação para Baixo/fisiologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Ubiquitina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Humanos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Camundongos Mutantes , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo
12.
J Exp Med ; 202(5): 589-95, 2005 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-16147974

RESUMO

Osteoclasts are derived from myeloid lineage cells, and their differentiation is supported by various osteotropic factors, including the tumor necrosis factor (TNF) family member TNF-related activation-induced cytokine (TRANCE). Genetic deletion of TRANCE or its receptor, receptor activator of nuclear factor kappaB (RANK), results in severely osteopetrotic mice with no osteoclasts in their bones. TNF receptor-associated factor (TRAF) 6 is a key signaling adaptor for RANK, and its deficiency leads to similar osteopetrosis. Hence, the current paradigm holds that TRANCE-RANK interaction and subsequent signaling via TRAF6 are essential for the generation of functional osteoclasts. Surprisingly, we show that hematopoietic precursors from TRANCE-, RANK-, or TRAF6-null mice can become osteoclasts in vitro when they are stimulated with TNF-alpha in the presence of cofactors such as TGF-beta. We provide direct evidence against the current paradigm that the TRANCE-RANK-TRAF6 pathway is essential for osteoclast differentiation and suggest the potential existence of alternative routes for osteoclast differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Osteoclastos/citologia , Osteoclastos/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Proteínas de Transporte/genética , Primers do DNA , Deleção de Genes , Técnicas Histológicas , Linfotoxina-alfa/farmacologia , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator 6 Associado a Receptor de TNF/deficiência , Fator 6 Associado a Receptor de TNF/genética
13.
Eur J Immunol ; 40(5): 1369-74, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20148423

RESUMO

Involvement of Treg in transplant tolerance has been demonstrated in multiple models. During the active process of graft rejection, these regulatory cells are themselves regulated and inactivated, a process termed counter-regulation. We hypothesize that ligation of the costimulatory molecule glucocorticoid-induced TNF receptor-related protein (GITR) on Treg inhibits their ability to promote graft survival, and by blocking GITR ligation graft survival can be prolonged. To this aim, we have designed a soluble GITR fusion protein (GITR-Fc), which binds GITR ligand and inhibits activation of GITR. Here, we show that GITR-Fc prolonged mouse skin graft survival, and this prolongation is dependent on Treg. In a full MHC-mismatched skin graft setting, GITR-Fc significantly improved graft survival when used in combination with MR1, anti-CD40L, while GITR-Fc alone did not demonstrate graft prolongation. These results demonstrate that disruption of binding of GITR with GITR ligand may be an important strategy in prolonging allograft survival.


Assuntos
Sobrevivência de Enxerto/efeitos dos fármacos , Imunossupressores/uso terapêutico , Receptores de Fator de Crescimento Neural/imunologia , Receptores do Fator de Necrose Tumoral/imunologia , Transplante de Pele/imunologia , Linfócitos T Reguladores/imunologia , Transplante Homólogo/imunologia , Inibidores do Fator de Necrose Tumoral , Transferência Adotiva , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Ligação Competitiva , Ligante de CD40 , Proteína Relacionada a TNFR Induzida por Glucocorticoide , Antígenos de Histocompatibilidade Classe I , Humanos , Tolerância Imunológica/efeitos dos fármacos , Imunossupressores/administração & dosagem , Imunossupressores/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor , Receptores de Fator de Crescimento Neural/genética , Receptores do Fator de Necrose Tumoral/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Fatores de Necrose Tumoral/imunologia
14.
Cell Mol Life Sci ; 67(22): 3883-92, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20532808

RESUMO

Interleukin (IL)-33 is a recently described pro-inflammatory cytokine. Here we demonstrate IL-33 as a regulator of functional osteoclasts (OCs) from human CD14(+) monocytes. IL-33 stimulates formation of tartrate-resistant acid phosphatase (TRAP)(+) multinuclear OCs from monocytes. This action was suppressed by anti-ST2 antibody, suggesting that IL-33 acts through its receptor ST2, but not by the receptor activator of NF-κB ligand (RANKL) decoy, osteoprotegerin, or anti-RANKL antibody. IL-33 stimulated activating phosphorylations of signaling molecules in monocytes that are critical for OC development. These included Syk, phospholipase Cγ2, Gab2, MAP kinases, TAK-1, and NF-κB. IL-33 also enhanced expression of OC differentiation factors including TNF-α receptor-associated factor 6 (TRAF6), nuclear factor of activated T cells cytoplasmic 1, c-Fos, c-Src, cathepsin K, and calcitonin receptor. IL-33 eventually induced bone resorption. This study suggests that the osteoclastogenic property of IL-33 is mediated through TRAF6 as well as the immunoreceptor tyrosine-based activation motif-dependent Syk/PLCγ pathway in human CD14(+) monocytes.


Assuntos
Reabsorção Óssea/imunologia , Diferenciação Celular , Interleucinas/imunologia , Receptores de Lipopolissacarídeos/imunologia , Monócitos/citologia , Osteoclastos/citologia , Receptores de Superfície Celular/imunologia , Reabsorção Óssea/metabolismo , Células Cultivadas , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Monócitos/imunologia , Osteoclastos/imunologia
15.
Nat Commun ; 12(1): 2258, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859201

RESUMO

Selenoproteins containing selenium in the form of selenocysteine are critical for bone remodeling. However, their underlying mechanism of action is not fully understood. Herein, we report the identification of selenoprotein W (SELENOW) through large-scale mRNA profiling of receptor activator of nuclear factor (NF)-κΒ ligand (RANKL)-induced osteoclast differentiation, as a protein that is downregulated via RANKL/RANK/tumour necrosis factor receptor-associated factor 6/p38 signaling. RNA-sequencing analysis revealed that SELENOW regulates osteoclastogenic genes. SELENOW overexpression enhances osteoclastogenesis in vitro via nuclear translocation of NF-κB and nuclear factor of activated T-cells cytoplasmic 1 mediated by 14-3-3γ, whereas its deficiency suppresses osteoclast formation. SELENOW-deficient and SELENOW-overexpressing mice exhibit high bone mass phenotype and osteoporosis, respectively. Ectopic SELENOW expression stimulates cell-cell fusion critical for osteoclast maturation as well as bone resorption. Thus, RANKL-dependent repression of SELENOW regulates osteoclast differentiation and blocks osteoporosis caused by overactive osteoclasts. These findings demonstrate a biological link between selenium and bone metabolism.


Assuntos
Remodelação Óssea/genética , Osteoclastos/fisiologia , Osteogênese/genética , Osteoporose/genética , Selenoproteína W/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Diferenciação Celular/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Osteoporose/patologia , Ligante RANK/metabolismo , RNA-Seq , Selenoproteína W/genética , Transdução de Sinais/fisiologia , Fator 6 Associado a Receptor de TNF/metabolismo
16.
Biochem Biophys Res Commun ; 403(1): 73-8, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21040703

RESUMO

Bone homeostasis is maintained through the balanced action of bone-forming osteoblasts and bone-resorbing osteoclasts. Under pathological conditions or with age, excessive bone loss is often observed due to increased bone resorption. Since osteoclasts are the primary cells in the body that can resorb bone, molecular understanding of osteoclast fate has important clinical implications. Over the past 20 years, many molecular players that govern osteoclast differentiation during normal development have been identified. However, whether the same molecules regulate bone loss occurring under pathological conditions remains largely unknown. We report here that although ATP6v0d2-deficient (ATP6v0d2 KO) mice exhibit an osteopetrotic phenotype due to inefficient osteoclast maturation, this deficiency fails to protect mice from ovariectomy (OVX)-induced bone loss, a model for post-menopause-associated osteoporosis. Moreover, we show that an OVX-induced increase in the number of colony forming unit-granulocyte/macrophage (CFU-GM) in bone marrow cells and subsequent osteoclast formation in vitro was not affected in the absence of ATP6v0d2. However, even after OVX, formation of large osteoclasts (>100 µm in diameter) with actin rings was still reduced in the absence of ATP6v0d2. Taken together, these findings suggest that the critical role of ATP6v0d2 may be limited to the control of bone homeostasis under normal development, and that OVX-induced bone loss is likely to be governed mostly by the increase in osteoclast precursors rather than increased efficiency of osteoclast maturation.


Assuntos
Densidade Óssea , Osso e Ossos/citologia , Diferenciação Celular , ATPases Vacuolares Próton-Translocadoras/fisiologia , Animais , Camundongos , Camundongos Knockout , Osteoclastos/citologia , Osteoporose/metabolismo , Osteoporose/patologia , ATPases Vacuolares Próton-Translocadoras/genética
17.
J Bone Metab ; 27(1): 53-63, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32190609

RESUMO

BACKGROUND: Rosae Multiflorae fructus (RMF), known to have anti-inflammatory and antioxidant properties, has been used as a traditional remedy for inflammatory diseases such as arthritis in Eastern Asia. However, its effect on osteoclasts, which play a crucial role in resorptive inflammatory bone diseases, is yet to be elucidated. METHODS: The effect of extract of RMF (RMF-E) on receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis was examined by tartrate-resistant acid phosphatase (TRAP) staining, real-time polymerase chain reaction and western blot analysis. In addition, RANKL-induced Ca2+-oscillation was also investigated. RESULTS: RMF-E remarkably inhibited TRAP+-osteoclast and resorptive pit formation in a dose-dependent manner. In addition, the expression of c-Fos and nuclear factor of activated T-cells cytoplasmic, known as pivotal transcription factors for osteoclast formation in vitro and in vivo, and that of the osteoclast differentiation markers such as Acp5, Oscar, CtsK, Atp6v0d2, Tm7sf4, and Nfatc1 were significantly decreased by RMF-E treatment during osteoclastogenesis. The inhibitory effect of RMF-E on RANKL-induced osteoclastogenesis was caused by the suppression of p38 mitogen-activated protein kinase activation, and RANKL-induced Ca2+-oscillation removal via inactivation of Bruton's tyrosine kinase (BTK), and subsequently phospholipase C-γ2. CONCLUSIONS: RMF-E negatively regulates osteoclast differentiation and formation. These findings suggest the possibility of RMF-E as a traditional therapeutic agent against osteoclast-related bone disorders such as osteoporosis, rheumatoid arthritis, and periodontitis.

18.
Photodiagnosis Photodyn Ther ; 30: 101688, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32087294

RESUMO

BACKGROUND: To determine the safety and efficacy of antimicrobial photodynamic therapy (aPDT) combination of 0.33 mM Toluidine Blue O (TBO) with 60 mW/cm2 LED irradiation for 5 min that we had established, this study investigated the cytotoxic effect of aPDT combination on mammalian oral cells (gingival fibroblast and periodontal ligament cells) and compared the antimicrobial efficacy of antibiotics (the combination of amoxicillin (AMX) and metronidazole (MTZ)) against representative periodontitis pathogenic bacteria (Porphyromonas gingivalis, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans) versus our aPDT combination. RESULT: aPDT combination did not show any detectable effect on the viability of Streptococcus sanguinis or Streptococcus mitis, the most common resident species in the oral flora. However, it significantly reduced CFU values of P. gingivalis, F. nucleatum, and A. actinomycetemcomitans. The cytotoxicity of the present aPDT combination to mammalian oral cells was comparable to that of standard antiseptics used in oral cavity. In antimicrobial efficacy test, the present aPDT combination showed equivalent bactericidal rate compared to the combination of AMX + MTZ, the most widely used antibiotics in the periodontitis treatment. The bactericidal ability of the AMX + MTZ combination was effective against all five bacteria tested regardless of the bacterial species, whereas the bactericidal ability of the aPDT combination was effective only against P. gingivalis, F. nucleatum, and A. actinomycetemcomitans, the representative periodontitis pathogenic bacterial species. CONCLUSION: The present study demonstrated the safety and efficacy of the present aPDT combination in periodontitis treatment. TBO-mediated aPDT with LED irradiation has the potential to serve as a safe single or adjunctive antimicrobial procedure for nonsurgical periodontal treatment without damaging adjacent normal oral tissue or resident flora.


Assuntos
Anti-Infecciosos , Periodontite , Fotoquimioterapia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Periodontite/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porphyromonas gingivalis
19.
Biochem Biophys Res Commun ; 390(3): 585-90, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19818731

RESUMO

Bone homeostasis is tightly regulated by matrix-producing osteoblasts and bone-resorbing osteoclasts. During osteoclast development, mononuclear preosteoclasts derived from myeloid cells fuse together to form multinucleated, giant cells. Previously, we reported that the d2 isoform of the vacuolar (H(+)) ATPase V0 domain (Atp6v0d2) plays an important role in osteoclast maturation and bone formation. To understand how Atp6v0d2 controls osteoclast maturation, we have performed a yeast two-hybrid screen using full-length Atp6v0d2 as the bait, and identified adhesion-regulating molecule 1 protein (Adrm1) as a potential functional partner of Atp6v0d2. The interaction between Atp6v0d2 and Adrm1 was confirmed in yeast and invivo using immunoprecipitation assays. We also show that Adrm1 is required for cell migration and osteoclast maturation.


Assuntos
Diferenciação Celular , Glicoproteínas de Membrana/metabolismo , Osteoclastos/fisiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Movimento Celular , Células Cultivadas , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/genética , Camundongos , Osteoclastos/citologia , Osteoclastos/metabolismo , Técnicas do Sistema de Duplo-Híbrido , ATPases Vacuolares Próton-Translocadoras/genética
20.
Mol Endocrinol ; 22(1): 176-85, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17885208

RESUMO

NFATc1 has been characterized as a master regulator of nuclear factor kappaB ligand-induced osteoclast differentiation. Herein, we demonstrate a novel role for NFATc1 as a positive regulator of nuclear factor kappaB ligand-mediated osteoclast fusion as well as other fusion-inducing factors such as TNF-alpha. Exogenous overexpression of a constitutively active form of NFATc1 in bone marrow-derived monocyte/macrophage cells (BMMs) induces formation of multinucleated osteoclasts as well as the expression of fusion-mediating molecules such as the d2 isoform of vacuolar ATPase V(o) domain (Atp6v0d2) and the dendritic cell-specific transmembrane protein (DC-STAMP). Moreover, inactivation of NFATc1 by cyclosporin A treatment attenuates expression of Atp6v0d2 and DC-STAMP and subsequent fusion process of osteoclasts. We show that NFATc1 binds to the promoter regions of Atp6v0d2 and DC-STAMP in osteoclasts and directly induces their expression. Furthermore, overexpression of Atp6v0d2 and DC-STAMP rescues cell-cell fusion of preosteoclasts despite reduced NFATc1 activity. Our data indicate for the first time that the NFATc1/Atp6v0d2 and DC-STAMP signaling axis plays a key role in the osteoclast multinucleation process, which is essential for efficient bone resorption.


Assuntos
Células Dendríticas/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição NFATC/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Osteoclastos/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Animais , Western Blotting , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Fusão Celular , Células Dendríticas/citologia , Proteínas de Membrana/genética , Camundongos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas do Tecido Nervoso/genética , Análise de Sequência com Séries de Oligonucleotídeos , Osteoclastos/citologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , ATPases Translocadoras de Prótons/genética , Ligante RANK/genética , Ligante RANK/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA