Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Opt Express ; 32(7): 12228-12242, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571052

RESUMO

Highly collimated and directional backlights are essential for realizing advanced display technologies such as autostereoscopic 3D displays. Previously reported collimated backlights, either edge-lit or direct-lit, in general still suffer unsatisfactory form factors, directivity, uniformity, or crosstalk etc. In this work, we report a simple stacking architecture for the highly collimated and uniform backlights, by combining linear light source arrays and carefully designed cylindrical lens arrays. Experiments were conducted to validate the design and simulation, using the conventional edge-lit backlight or the direct-lit mini-LED (mLED) arrays as light sources, the NiFe (stainless steel) barrier sheets, and cylindrical lens arrays fabricated by molding. Highly collimated backlights with small angular divergence of ±1.45°âˆ¼±2.61°, decent uniformity of 93-96%, and minimal larger-angle sidelobes in emission patterns were achieved with controlled divergence of the light source and optimization of lens designs. The architecture reported here provides a convenient way to convert available backlight sources into a highly collimated backlight, and the use of optically reflective barrier also helps recycle light energy and enhance the luminance. The results of this work are believed to provide a facile approach for display technologies requiring highly collimated backlights.

2.
J Magn Reson Imaging ; 59(2): 587-598, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37220191

RESUMO

BACKGROUND: The delineation of brain arteriovenous malformations (bAVMs) is crucial for subsequent treatment planning. Manual segmentation is time-consuming and labor-intensive. Applying deep learning to automatically detect and segment bAVM might help to improve clinical practice efficiency. PURPOSE: To develop an approach for detecting bAVM and segmenting its nidus on Time-of-flight magnetic resonance angiography using deep learning methods. STUDY TYPE: Retrospective. SUBJECTS: 221 bAVM patients aged 7-79 underwent radiosurgery from 2003 to 2020. They were split into 177 training, 22 validation, and 22 test data. FIELD STRENGTH/SEQUENCE: 1.5 T, Time-of-flight magnetic resonance angiography based on 3D gradient echo. ASSESSMENT: The YOLOv5 and YOLOv8 algorithms were utilized to detect bAVM lesions and the U-Net and U-Net++ models to segment the nidus from the bounding boxes. The mean average precision, F1, precision, and recall were used to assess the model performance on the bAVM detection. To evaluate the model's performance on nidus segmentation, the Dice coefficient and balanced average Hausdorff distance (rbAHD) were employed. STATISTICAL TESTS: The Student's t-test was used to test the cross-validation results (P < 0.05). The Wilcoxon rank test was applied to compare the median for the reference values and the model inference results (P < 0.05). RESULTS: The detection results demonstrated that the model with pretraining and augmentation performed optimally. The U-Net++ with random dilation mechanism resulted in higher Dice and lower rbAHD, compared to that without that mechanism, across varying dilated bounding box conditions (P < 0.05). When combining detection and segmentation, the Dice and rbAHD were statistically different from the references calculated using the detected bounding boxes (P < 0.05). For the detected lesions in the test dataset, it showed the highest Dice of 0.82 and the lowest rbAHD of 5.3%. DATA CONCLUSION: This study showed that pretraining and data augmentation improved YOLO detection performance. Properly limiting lesion ranges allows for adequate bAVM segmentation. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Aprendizado Profundo , Malformações Arteriovenosas Intracranianas , Humanos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Malformações Arteriovenosas Intracranianas/cirurgia , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
3.
J Magn Reson Imaging ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572087

RESUMO

BACKGROUND: Deep learning-based segmentation algorithms usually required large or multi-institute data sets to improve the performance and ability of generalization. However, protecting patient privacy is a key concern in the multi-institutional studies when conventional centralized learning (CL) is used. PURPOSE: To explores the feasibility of a proposed lesion delineation for stereotactic radiosurgery (SRS) scheme for federated learning (FL), which can solve decentralization and privacy protection concerns. STUDY TYPE: Retrospective. SUBJECTS: 506 and 118 vestibular schwannoma patients aged 15-88 and 22-85 from two institutes, respectively; 1069 and 256 meningioma patients aged 12-91 and 23-85, respectively; 574 and 705 brain metastasis patients aged 26-92 and 28-89, respectively. FIELD STRENGTH/SEQUENCE: 1.5T, spin-echo, and gradient-echo [Correction added after first online publication on 21 August 2023. Field Strength has been changed to "1.5T" from "5T" in this sentence.]. ASSESSMENT: The proposed lesion delineation method was integrated into an FL framework, and CL models were established as the baseline. The effect of image standardization strategies was also explored. The dice coefficient was used to evaluate the segmentation between the predicted delineation and the ground truth, which was manual delineated by neurosurgeons and a neuroradiologist. STATISTICAL TESTS: The paired t-test was applied to compare the mean for the evaluated dice scores (p < 0.05). RESULTS: FL performed the comparable mean dice coefficient to CL for the testing set of Taipei Veterans General Hospital regardless of standardization and parameter; for the Taichung Veterans General Hospital data, CL significantly (p < 0.05) outperformed FL while using bi-parameter, but comparable results while using single-parameter. For the non-SRS data, FL achieved the comparable applicability to CL with mean dice 0.78 versus 0.78 (without standardization), and outperformed to the baseline models of two institutes. DATA CONCLUSION: The proposed lesion delineation successfully implemented into an FL framework. The FL models were applicable on SRS data of each participating institute, and the FL exhibited comparable mean dice coefficient to CL on non-SRS dataset. Standardization strategies would be recommended when FL is used. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 1.

4.
Opt Express ; 30(26): 46435-46449, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558597

RESUMO

Light extraction improvement is still an important issue for active-matrix organic light-emitting diode displays (AMOLEDs). In our previous work, a three-dimensional (3D) reflective pixel configuration embedding the OLED in the concave 3D reflector and patterned high-index filler had been proposed for significant enhancement of the pixel light extraction. In this work, influences of thin film encapsulation (TFE) on light extraction of such reflective 3D OLED pixels are considered as well by simulation studies. Unfortunately, the optical simulation reveals strong reduction of the light extraction efficiency induced by TFE layers. As such, an additional angle-selective optical film structure between the pixel and the encapsulation layers is introduced to control the angular distribution of the light coupled into the encapsulation layers and to solve TFE-induced optical losses. As a result, TFE-induced losses can be substantially reduced to retain much of light extraction efficiency. The results of this study are believed to provide useful insights and guides for developing even more efficient and power-saving AMOLEDs.

5.
Sensors (Basel) ; 22(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35162007

RESUMO

Magnetic resonance fingerprinting (MRF) based on echo-planar imaging (EPI) enables whole-brain imaging to rapidly obtain T1 and T2* relaxation time maps. Reconstructing parametric maps from the MRF scanned baselines by the inner-product method is computationally expensive. We aimed to accelerate the reconstruction of parametric maps for MRF-EPI by using a deep learning model. The proposed approach uses a two-stage model that first eliminates noise and then regresses the parametric maps. Parametric maps obtained by dictionary matching were used as a reference and compared with the prediction results of the two-stage model. MRF-EPI scans were collected from 32 subjects. The signal-to-noise ratio increased significantly after the noise removal by the denoising model. For prediction with scans in the testing dataset, the mean absolute percentage errors between the standard and the final two-stage model were 3.1%, 3.2%, and 1.9% for T1, and 2.6%, 2.3%, and 2.8% for T2* in gray matter, white matter, and lesion locations, respectively. Our proposed two-stage deep learning model can effectively remove noise and accurately reconstruct MRF-EPI parametric maps, increasing the speed of reconstruction and reducing the storage space required by dictionaries.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Aceleração , Atenção , Encéfalo/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética , Redes Neurais de Computação , Imagens de Fantasmas
6.
Magn Reson Med ; 86(1): 471-486, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33547656

RESUMO

PURPOSE: To develop an accelerated postprocessing pipeline for reproducible and efficient assessment of white matter lesions using quantitative magnetic resonance fingerprinting (MRF) and deep learning. METHODS: MRF using echo-planar imaging (EPI) scans with varying repetition and echo times were acquired for whole brain quantification of T1 and T2∗ in 50 subjects with multiple sclerosis (MS) and 10 healthy volunteers along 2 centers. MRF T1 and T2∗ parametric maps were distortion corrected and denoised. A CNN was trained to reconstruct the T1 and T2∗ parametric maps, and the WM and GM probability maps. RESULTS: Deep learning-based postprocessing reduced reconstruction and image processing times from hours to a few seconds while maintaining high accuracy, reliability, and precision. Mean absolute error performed the best for T1 (deviations 5.6%) and the logarithmic hyperbolic cosinus loss the best for T2∗ (deviations 6.0%). CONCLUSIONS: MRF is a fast and robust tool for quantitative T1 and T2∗ mapping. Its long reconstruction and several postprocessing steps can be facilitated and accelerated using deep learning.


Assuntos
Aprendizado Profundo , Substância Branca , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes , Substância Branca/diagnóstico por imagem
7.
Opt Express ; 29(5): 7654-7665, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726262

RESUMO

Sunlight/UV (ultraviolet)-induced degradation is still a critical issue for outdoor applications of organic light-emitting diode (OLED) displays. Therefore, effective UV-blocking structures that can prevent OLED displays from sunlight/UV degradation and still keep the OLED panels' display performance is necessary. In this report, modified distributed Bragg reflector (DBR) structures having UV-absorbing dielectric materials and adjusted layer/pair thicknesses were developed to realize effective UV blocking properties (nearly 0% transmittance below 400 nm), constantly high transmittance like glass in the visible range (∼92%) required for display applications, and sharp transition in transmission between the UV and the visible ranges. Furthermore, under the rigorous IEC 60068-2-5 solar test condition, it was verified that the developed modified, UV-blocking DBR can effectively enhance the OLED panel's resistance against UV/solar-induced degradation, effectively reducing voltage shifts of OLED devices after repeated solar test cycles.

9.
Opt Express ; 24(10): A810-22, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409954

RESUMO

We report the characterization and analyses of organic light-emitting devices (OLEDs) using microstructured composite transparent electrodes consisting of the high-index ITO (indium tin oxide) micromesh and the low-index conducting polymer PEDOT: PSS [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)], that are fabricated by the facile and convenient microsphere lithography and are useful for enhancing light extraction. The rigorous electromagnetic simulation based on the three-dimensional finite-difference time-domain (FDTD) method was conducted to study optical properties and mechanisms in such devices. It provides a different but consistent viewpoint/insight of how this microstructured electrode enhances optical out-coupling of OLEDs, compared to that provided by ray optics simulation in previous works. Both experimental and simulation studies indicate such a microstructured electrode effectively enhances coupling of internal radiation into the substrate, compared to devices with the typical planar ITO electrode. By combining this internal extraction structure and the external extraction scheme (e.g. by attaching extraction lens) to further extract radiation into the substrate, a rather high external quantum efficiency of 46.8% was achieved with green phosphorescent OLEDs, clearly manifesting its high potential.

10.
Radiother Oncol ; 190: 110007, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967585

RESUMO

BACKGROUND: Manual detection of brain metastases is both laborious and inconsistent, driving the need for more efficient solutions. Accordingly, our systematic review and meta-analysis assessed the efficacy of deep learning algorithms in detecting and segmenting brain metastases from various primary origins in MRI images. METHODS: We conducted a comprehensive search of PubMed, Embase, and Web of Science up to May 24, 2023, which yielded 42 relevant studies for our analysis. We assessed the quality of these studies using the QUADAS-2 and CLAIM tools. Using a random-effect model, we calculated the pooled lesion-wise dice score as well as patient-wise and lesion-wise sensitivity. We performed subgroup analyses to investigate the influence of factors such as publication year, study design, training center of the model, validation methods, slice thickness, model input dimensions, MRI sequences fed to the model, and the specific deep learning algorithms employed. Additionally, meta-regression analyses were carried out considering the number of patients in the studies, count of MRI manufacturers, count of MRI models, training sample size, and lesion number. RESULTS: Our analysis highlighted that deep learning models, particularly the U-Net and its variants, demonstrated superior segmentation accuracy. Enhanced detection sensitivity was observed with an increased diversity in MRI hardware, both in terms of manufacturer and model variety. Furthermore, slice thickness was identified as a significant factor influencing lesion-wise detection sensitivity. Overall, the pooled results indicated a lesion-wise dice score of 79%, with patient-wise and lesion-wise sensitivities at 86% and 87%, respectively. CONCLUSIONS: The study underscores the potential of deep learning in improving brain metastasis diagnostics and treatment planning. Still, more extensive cohorts and larger meta-analysis are needed for more practical and generalizable algorithms. Future research should prioritize these areas to advance the field. This study was funded by the Gen. & Mrs. M.C. Peng Fellowship and registered under PROSPERO (CRD42023427776).


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Humanos , Algoritmos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem
11.
Int J Stroke ; 18(4): 408-415, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36073612

RESUMO

BACKGROUND: Research investigating differences in the overall stroke risk between individuals with and without immune thrombocytopenia (ITP) is lacking. METHODS: This real-world study used the National Health Insurance Research Database (NHIRD). Risk of stroke was compared between 13,085 individuals with ITP enrolled between 1 January 2000 and 31 December 2015 and a control cohort of 52,340 individuals without ITP (1:4 ratio propensity score-matched by age, sex, index year, relevant comorbidities, and medications). Sub-distribution hazards models were used to estimate adjusted sub-distribution hazard ratio (SHR) and 95% confidence intervals (CIs), with the non-ITP group as the control group. RESULTS: Of the 65,425 participants, 13,085 had ITP, 63.3% were women, and the mean age was 52.59 years. The risk of both ischemic and hemorrhagic stroke was 1.14 times (adjusted SHR 1.14, 95% CI, 1.07-1.22) and 1.93 times (adjusted SHR 1.93, 95% CI, 1.70-2.20) higher in the ITP group than in controls. Patients with ITP in the 20- to 29-year subgroup had a higher risk of new-onset stroke (adjusted SHR, 4.06 (95% CI, 2.72-6.07), p value for interaction <0.01) than those aged 20-29 years without ITP. Individuals with severe ITP with splenectomy had a 1.79 times higher overall stroke risk than those without. CONCLUSIONS: ITP is associated with increased risk of both ischemic and hemorrhagic stroke.


Assuntos
Acidente Vascular Cerebral Hemorrágico , Púrpura Trombocitopênica Idiopática , Acidente Vascular Cerebral , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Acidente Vascular Cerebral/complicações , Púrpura Trombocitopênica Idiopática/complicações , Púrpura Trombocitopênica Idiopática/epidemiologia , Estudos de Coortes , Acidente Vascular Cerebral Hemorrágico/complicações , Comorbidade , Fatores de Risco , Estudos Retrospectivos , Taiwan/epidemiologia
12.
Comput Methods Programs Biomed ; 229: 107311, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577161

RESUMO

BACKGROUND AND OBJECTIVE: GKRS is an effective treatment for smaller intracranial tumors with a high control rate and low risk of complications. Target delineation in medical MR images is essential in the planning of GKRS and follow-up. A deep learning-based algorithm can effectively segment the targets from medical images and has been widely explored. However, state-of-the-art deep learning-based target delineation uses fixed sizes, and the isotropic voxel size may not be suitable for stereotactic MR images which use different anisotropic voxel sizes and numbers of slices according to the lesion size and location for clinical GKRS planning. This study developed an automatic deep learning-based segmentation scheme for stereotactic MR images. METHODS: We retrospectively collected stereotactic MR images from 506 patients with VS, 1,069 patients with meningioma and 574 patients with BM who had been treated using GKRS; the lesion contours and individual T1W+C and T2W MR images were extracted from the GammaPlan system. The three-dimensional patching-based training strategy and dual-pathway architecture were used to manage inconsistent FOVs and anisotropic voxel size. Furthermore, we used two-parametric MR image as training input to segment the regions with different image characteristics (e.g., cystic lesions) effectively. RESULTS: Our results for VS and BM demonstrated that the model trained using two-parametric MR images significantly outperformed the model trained using single-parametric images with median Dice coefficients (0.91, 0.05 versus 0.90, 0.06, and 0.82, 0.23 versus 0.78, 0.34, respectively), whereas predicted delineations in meningiomas using the dual-pathway model were dominated by single-parametric images (median Dice coefficients 0.83, 0.17 versus 0.84, 0.22). Finally, we combined three data sets to train the models, achieving the comparable or even higher testing median Dice (VS: 0.91, 0.07; meningioma: 0.83, 0.22; BM: 0.84, 0.23) in three diseases while using two-parametric as input. CONCLUSIONS: Our proposed deep learning-based tumor segmentation scheme was successfully applied to multiple types of intracranial tumor (VS, meningioma and BM) undergoing GKRS and for segmenting the tumor effectively from stereotactic MR image volumes for use in GKRS planning.


Assuntos
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Neuroma Acústico , Radiocirurgia , Humanos , Meningioma/diagnóstico por imagem , Meningioma/cirurgia , Neuroma Acústico/diagnóstico por imagem , Neuroma Acústico/radioterapia , Neuroma Acústico/cirurgia , Radiocirurgia/métodos , Estudos Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Resultado do Tratamento , Imageamento por Ressonância Magnética , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/cirurgia
13.
Sci Rep ; 11(1): 3106, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542422

RESUMO

Artificial intelligence (AI) has been applied with considerable success in the fields of radiology, pathology, and neurosurgery. It is expected that AI will soon be used to optimize strategies for the clinical management of patients based on intensive imaging follow-up. Our objective in this study was to establish an algorithm by which to automate the volumetric measurement of vestibular schwannoma (VS) using a series of parametric MR images following radiosurgery. Based on a sample of 861 consecutive patients who underwent Gamma Knife radiosurgery (GKRS) between 1993 and 2008, the proposed end-to-end deep-learning scheme with automated pre-processing pipeline was applied to a series of 1290 MR examinations (T1W+C, and T2W parametric MR images). All of which were performed under consistent imaging acquisition protocols. The relative volume difference (RVD) between AI-based volumetric measurements and clinical measurements performed by expert radiologists were + 1.74%, - 0.31%, - 0.44%, - 0.19%, - 0.01%, and + 0.26% at each follow-up time point, regardless of the state of the tumor (progressed, pseudo-progressed, or regressed). This study outlines an approach to the evaluation of treatment responses via novel volumetric measurement algorithm, and can be used longitudinally following GKRS for VS. The proposed deep learning AI scheme is applicable to longitudinal follow-up assessments following a variety of therapeutic interventions.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Neuroma Acústico/cirurgia , Radiocirurgia/métodos , Nervo Vestibulococlear/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Neuroma Acústico/diagnóstico por imagem , Neuroma Acústico/patologia , Radiometria , Resultado do Tratamento , Carga Tumoral , Nervo Vestibulococlear/diagnóstico por imagem , Nervo Vestibulococlear/patologia
14.
Mater Horiz ; 8(8): 2286-2292, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846432

RESUMO

The thermally activated delayed fluorescence (TADF) emitters based on donor-acceptor (D-A) configuration were continuously developed in the past few years, whereas an unsymmetrical TADF emitter with A-D-A' configuration has never been reported. Herein, an A-D-A' type TADF emitter of TRZ-SBA-NAI was firstly developed by simultaneously integrating 2-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-dione and 2,4,6-triphenyl-1,3,5-triazine acceptors into a spirobiacridine donor core. Due to the coexistence of double charge-transfer excited states, TRZ-SBA-NAI displayed dual emission containing a dominant orange-red emission and an anti-Kasha's rule sky-blue emission shoulder in solution. As doped into the host matrix, TRZ-SBA-NAI only exhibited an orange-red emission, together with a high photoluminescence quantum yield of 87%. The linear molecular shape imparted TRZ-SBA-NAI with a high horizontal dipole ratio of 88%. As a result, the TRZ-SBA-NAI based devices achieved a record-high external quantum efficiency of 31.7% with an electroluminescence peak at 593 nm. This finding not only enriches the diversity in TADF molecular design, but also unlocks the huge potential of A-D-A' type TADF emitters for excellent device performance.

15.
Mater Horiz ; 8(2): 547-555, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821270

RESUMO

By integrating high molecular rigidity and stable chirality, two pairs of D*-A type circularly polarized thermally activated delayed fluorescence (CP-TADF) emitters with an almost absolute quasi-equatorial conformer geometry and excellent photoluminescence quantum efficiencies (PLQYs) are developed, achieving state-of-the-art electroluminescence performance among blue and orange circularly polarized organic light-emitting diodes (CP-OLEDs).

16.
ACS Appl Mater Interfaces ; 13(11): 13478-13486, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33689279

RESUMO

How to develop efficient red-emitting organometallics of earth-abundant copper(I) is a formidable challenge in the field of organic light-emitting diodes (OLEDs) because Cu(I) complexes have weak spin-orbit coupling and a serious excited-state reorganization effect. Here, a red Cu(I) complex, MAC*-Cu-DPAC, was developed using a rigid 9,9-diphenyl-9,10-dihydroacridine donor ligand in a carbene-metal-amide motif. The Cu(I) complex achieved satisfactory red emission, a high photoluminescence quantum yield of up to 70%, and a sub-microsecond lifetime. Thanks to a linear geometry and the acceptor and donor ligands in a coplanar conformation, the complex exhibited a high horizontal dipole ratio of 77% in the host matrix, first demonstrated for coinage metal(I) complexes. The resulting OLEDs delivered high external quantum efficiencies of 21.1% at a maximum and 20.1% at 1000 nits, together with a red emission peak at ∼630 nm. These values represent the state-of-the-art performance for red-emitting OLEDs based on coinage metal complexes.

17.
Radiother Oncol ; 155: 123-130, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33161011

RESUMO

BACKGROUND AND PURPOSE: Gamma Knife radiosurgery (GKRS) is a safe and effective treatment modality with a long-term tumor control rate over 90% for vestibular schwannoma (VS). However, numerous tumors may undergo a transient pseudoprogression during 6-18 months after GKRS followed by a long-term volume reduction. The aim of this study is to determine whether the radiomics analysis based on preradiosurgical MRI data could predict the pseudoprogression and long-term outcome of VS after GKRS. MATERIALS AND METHODS: A longitudinal dataset of patients with VS treated by single GKRS were retrospectively collected. Overall 336 patients with no previous craniotomy for tumor removal and a median of 65-month follow-up period after radiosurgery were finally included in this study. In total 1763 radiomic features were extracted from the multiparameteric MRI data before GKRS followed by the machine-learning classification. RESULTS: We constructed a two-level machine-learning model to predict the long-term outcome and the occurrence of transient pseudoprogression after GKRS separately. The prediction of long-term outcome achieved an accuracy of 88.4% based on five radiomic features describing the variation of T2-weighted intensity and inhomogeneity of contrast enhancement in tumor. The prediction of transient pseudoprogression achieved an accuracy of 85.0% based on another five radiomic features associated with the inhomogeneous hypointensity pattern of contrast enhancement and the variation of T2-weighted intensity. CONCLUSION: The proposed machine-learning model based on the preradiosurgical MR radiomics provides a potential to predict the pseudoprogression and long-term outcome of VS after GKRS, which can benefit the treatment strategy in clinical practice.


Assuntos
Neuroma Acústico , Radiocirurgia , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Neuroma Acústico/diagnóstico por imagem , Neuroma Acústico/radioterapia , Neuroma Acústico/cirurgia , Estudos Retrospectivos , Resultado do Tratamento
18.
Sci Adv ; 6(41)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33036963

RESUMO

Manipulating orientation of organic emitters remains a formidable challenge in organic light-emitting diodes (OLEDs). Here, expansion of the acceptor plane of thermally activated delayed fluorescence (TADF) emitters was demonstrated to selectively modulate emitting dipole orientation. Two proof-of-the-concept molecules, PXZPyPM and PXZTAZPM, were prepared by introducing a planar 2-phenylpyridine or 2,4,6-triphenyl-1,3,5-triazine substituent into a prototypical molecule (PXZPM) bearing a pyrimidine core and two phenoxazine donors. This design approach suppressed the influence of substituents on electronic structures and associated optoelectronic properties. Accordingly, PXZPyPM and PXZTAZPM preserved almost the same excited states and similar emission characteristics as PXZPM. The expanded acceptor plane of PXZPyPM and PXZTAZPM resulted in a 15 to 18% increase in horizontal ratios of emitting dipole orientation. PXZPyPM supported its green device exhibiting an external quantum efficiency of 33.9% and a power efficiency of 118.9 lumen per watt, competitive with the most efficient green TADF OLEDs reported so far.

19.
Artif Intell Med ; 107: 101911, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32828450

RESUMO

Manual delineation of vestibular schwannoma (VS) by magnetic resonance (MR) imaging is required for diagnosis, radiosurgery dose planning, and follow-up tumor volume measurement. A rapid and objective automatic segmentation method is required, but problems have been encountered due to the low through-plane resolution of standard VS MR scan protocols and because some patients have non-homogeneous cystic areas within their tumors. In this study, we retrospectively collected multi-parametric MR images from 516 patients with VS; these were extracted from the Gamma Knife radiosurgery planning system and consisted of T1-weighted (T1W), T2-weighted (T2W), and T1W with contrast (T1W + C) images. We developed an end-to-end deep-learning-based method via an automatic preprocessing pipeline. A two-pathway U-Net model involving two sizes of convolution kernel (i.e., 3 × 3 × 1 and 1 × 1 × 3) was used to extract the in-plane and through-plane features of the anisotropic MR images. A single-pathway model that adopted the same architecture as the two-pathway model, but used a kernel size of 3 × 3 × 3, was also developed for comparison purposes. In addition, we used multi-parametric MR images with different image contrasts as the model training input in order to effectively segment tumors with solid as well as cystic parts. The results of the automatic segmentation demonstrated that (1) the two-pathway model outperformed single-pathway model in terms of dice scores (0.90 ± 0.05 versus 0.87 ± 0.07); both of them having been trained using the T1W, T1W + C and T2W anisotropic MR images, (2) the optimal single-parametric two-pathway model (dice score: 0.88 ± 0.06) was then trained using the T1W + C images, and (3) the two-pathway models trained using bi-parametric (T1W + C and T2W) and tri-parametric (T1W, T2W, and T1W + C) images outperformed the model trained using the single-parametric (T1W + C) images (dice scores: 0.89 ± 0.05 and 0.90 ± 0.05, respectively, larger than 0.88 ± 0.06) because it showed improved segmentation of the non-homogeneous parts of the tumors. The proposed two-pathway U-Net model outperformed the single-pathway U-Net model when segmenting VS using anisotropic MR images. The multi-parametric models effectively improved on the defective segmentation obtained using the single-parametric models by separating the non-homogeneous tumors into their solid and cystic parts.


Assuntos
Neuroma Acústico , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Neuroma Acústico/diagnóstico por imagem , Neuroma Acústico/cirurgia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA