Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.052
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 170(1): 127-141.e15, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666115

RESUMO

Homeostatic programs balance immune protection and self-tolerance. Such mechanisms likely impact autoimmunity and tumor formation, respectively. How homeostasis is maintained and impacts tumor surveillance is unknown. Here, we find that different immune mononuclear phagocytes share a conserved steady-state program during differentiation and entry into healthy tissue. IFNγ is necessary and sufficient to induce this program, revealing a key instructive role. Remarkably, homeostatic and IFNγ-dependent programs enrich across primary human tumors, including melanoma, and stratify survival. Single-cell RNA sequencing (RNA-seq) reveals enrichment of homeostatic modules in monocytes and DCs from human metastatic melanoma. Suppressor-of-cytokine-2 (SOCS2) protein, a conserved program transcript, is expressed by mononuclear phagocytes infiltrating primary melanoma and is induced by IFNγ. SOCS2 limits adaptive anti-tumoral immunity and DC-based priming of T cells in vivo, indicating a critical regulatory role. These findings link immune homeostasis to key determinants of anti-tumoral immunity and escape, revealing co-opting of tissue-specific immune development in the tumor microenvironment.


Assuntos
Interferon gama/imunologia , Melanoma/imunologia , Monócitos/imunologia , Metástase Neoplásica/patologia , Neoplasias Cutâneas/imunologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Microambiente Tumoral , Animais , Diferenciação Celular , Células Dendríticas/imunologia , Homeostase , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Monócitos/patologia , Análise de Sequência de RNA , Análise de Célula Única , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transcriptoma
2.
Mol Cell ; 84(6): 1062-1077.e9, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38309276

RESUMO

Inverted Alu repeats (IRAlus) are abundantly found in the transcriptome, especially in introns and 3' untranslated regions (UTRs). Yet, the biological significance of IRAlus embedded in 3' UTRs remains largely unknown. Here, we find that 3' UTR IRAlus silences genes involved in essential signaling pathways. We utilize J2 antibody to directly capture and map the double-stranded RNA structure of 3' UTR IRAlus in the transcriptome. Bioinformatic analysis reveals alternative polyadenylation as a major axis of IRAlus-mediated gene regulation. Notably, the expression of mouse double minute 2 (MDM2), an inhibitor of p53, is upregulated by the exclusion of IRAlus during UTR shortening, which is exploited to silence p53 during tumorigenesis. Moreover, the transcriptome-wide UTR lengthening in neural progenitor cells results in the global downregulation of genes associated with neurodegenerative diseases, including amyotrophic lateral sclerosis, via IRAlus inclusion. Our study establishes the functional landscape of 3' UTR IRAlus and its role in human pathophysiology.


Assuntos
Poliadenilação , Proteína Supressora de Tumor p53 , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Regiões 3' não Traduzidas/genética , Regulação da Expressão Gênica , Íntrons
3.
Mol Cell ; 82(6): 1081-1083, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35303480

RESUMO

Lin et al. (2022) discover that FGFR2 undergoes liquid-liquid phase separation with its downstream effectors SHP2 and PLCγ1, and the formation of phase separated condensates is essential for signaling competency.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Tirosina Quinases , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais
4.
Nature ; 615(7951): 323-330, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813957

RESUMO

RNA silencing relies on specific and efficient processing of double-stranded RNA by Dicer, which yields microRNAs (miRNAs) and small interfering RNAs (siRNAs)1,2. However, our current knowledge of the specificity of Dicer is limited to the secondary structures of its substrates: a double-stranded RNA of approximately 22 base pairs with a 2-nucleotide 3' overhang and a terminal loop3-11. Here we found evidence pointing to an additional sequence-dependent determinant beyond these structural properties. To systematically interrogate the features of precursor miRNAs (pre-miRNAs), we carried out massively parallel assays with pre-miRNA variants and human DICER (also known as DICER1). Our analyses revealed a deeply conserved cis-acting element, termed the 'GYM motif' (paired G, paired pyrimidine and mismatched C or A), near the cleavage site. The GYM motif promotes processing at a specific position and can override the previously identified 'ruler'-like counting mechanisms from the 5' and 3' ends of pre-miRNA3-6. Consistently, integrating this motif into short hairpin RNA or Dicer-substrate siRNA potentiates RNA interference. Furthermore, we find that the C-terminal double-stranded RNA-binding domain (dsRBD) of DICER recognizes the GYM motif. Alterations in the dsRBD reduce processing and change cleavage sites in a motif-dependent fashion, affecting the miRNA repertoire in cells. In particular, the cancer-associated R1855L substitution in the dsRBD strongly impairs GYM motif recognition. This study uncovers an ancient principle of substrate recognition by metazoan Dicer and implicates its potential in the design of RNA therapeutics.


Assuntos
RNA Helicases DEAD-box , MicroRNAs , Conformação de Ácido Nucleico , Precursores de RNA , RNA Interferente Pequeno , Ribonuclease III , Humanos , Pareamento de Bases , RNA Helicases DEAD-box/metabolismo , MicroRNAs/biossíntese , MicroRNAs/genética , MicroRNAs/metabolismo , Ribonuclease III/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Precursores de RNA/biossíntese , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sequência de Bases
5.
Nature ; 615(7951): 331-338, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813958

RESUMO

Dicer has a key role in small RNA biogenesis, processing double-stranded RNAs (dsRNAs)1,2. Human DICER (hDICER, also known as DICER1) is specialized for cleaving small hairpin structures such as precursor microRNAs (pre-miRNAs) and has limited activity towards long dsRNAs-unlike its homologues in lower eukaryotes and plants, which cleave long dsRNAs. Although the mechanism by which long dsRNAs are cleaved has been well documented, our understanding of pre-miRNA processing is incomplete because structures of hDICER in a catalytic state are lacking. Here we report the cryo-electron microscopy structure of hDICER bound to pre-miRNA in a dicing state and uncover the structural basis of pre-miRNA processing. hDICER undergoes large conformational changes to attain the active state. The helicase domain becomes flexible, which allows the binding of pre-miRNA to the catalytic valley. The double-stranded RNA-binding domain relocates and anchors pre-miRNA in a specific position through both sequence-independent and sequence-specific recognition of the newly identified 'GYM motif'3. The DICER-specific PAZ helix is also reoriented to accommodate the RNA. Furthermore, our structure identifies a configuration of the 5' end of pre-miRNA inserted into a basic pocket. In this pocket, a group of arginine residues recognize the 5' terminal base (disfavouring guanine) and terminal monophosphate; this explains the specificity of hDICER and how it determines the cleavage site. We identify cancer-associated mutations in the 5' pocket residues that impair miRNA biogenesis. Our study reveals how hDICER recognizes pre-miRNAs with stringent specificity and enables a mechanistic understanding of hDICER-related diseases.


Assuntos
Microscopia Crioeletrônica , RNA Helicases DEAD-box , MicroRNAs , Precursores de RNA , Ribonuclease III , Humanos , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/ultraestrutura , MicroRNAs/biossíntese , MicroRNAs/química , MicroRNAs/metabolismo , MicroRNAs/ultraestrutura , Mutação , Ribonuclease III/química , Ribonuclease III/genética , Ribonuclease III/metabolismo , Ribonuclease III/ultraestrutura , Precursores de RNA/química , Precursores de RNA/metabolismo , Precursores de RNA/ultraestrutura , RNA de Cadeia Dupla/metabolismo , Especificidade por Substrato
6.
Mol Cell ; 81(16): 3422-3439.e11, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34320405

RESUMO

Maturation of canonical microRNA (miRNA) is initiated by DROSHA that cleaves the primary transcript (pri-miRNA). More than 1,800 miRNA loci are annotated in humans, but it remains largely unknown whether and at which sites pri-miRNAs are cleaved by DROSHA. Here, we performed in vitro processing on a full set of human pri-miRNAs (miRBase version 21) followed by sequencing. This comprehensive profiling enabled us to classify miRNAs on the basis of DROSHA dependence and map their cleavage sites with respective processing efficiency measures. Only 758 pri-miRNAs are confidently processed by DROSHA, while the majority may be non-canonical or false entries. Analyses of the DROSHA-dependent pri-miRNAs show key cis-elements for processing. We observe widespread alternative processing and unproductive cleavage events such as "nick" or "inverse" processing. SRSF3 is a broad-acting auxiliary factor modulating alternative processing and suppressing unproductive processing. The profiling data and methods developed in this study will allow systematic analyses of miRNA regulation.


Assuntos
MicroRNAs/genética , Processamento Pós-Transcricional do RNA/genética , Ribonuclease III/genética , Fatores de Processamento de Serina-Arginina/genética , Sítios de Ligação/genética , Genoma Humano/genética , Células HEK293 , Humanos , Interferência de RNA
7.
Mol Cell ; 81(13): 2838-2850.e6, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33989516

RESUMO

SARS-CoV-2 is an RNA virus whose success as a pathogen relies on its abilities to repurpose host RNA-binding proteins (RBPs) and to evade antiviral RBPs. To uncover the SARS-CoV-2 RNA interactome, we here develop a robust ribonucleoprotein (RNP) capture protocol and identify 109 host factors that directly bind to SARS-CoV-2 RNAs. Applying RNP capture on another coronavirus, HCoV-OC43, revealed evolutionarily conserved interactions between coronaviral RNAs and host proteins. Transcriptome analyses and knockdown experiments delineated 17 antiviral RBPs, including ZC3HAV1, TRIM25, PARP12, and SHFL, and 8 proviral RBPs, such as EIF3D and CSDE1, which are responsible for co-opting multiple steps of the mRNA life cycle. This also led to the identification of LARP1, a downstream target of the mTOR signaling pathway, as an antiviral host factor that interacts with the SARS-CoV-2 RNAs. Overall, this study provides a comprehensive list of RBPs regulating coronaviral replication and opens new avenues for therapeutic interventions.


Assuntos
Autoantígenos/genética , COVID-19/genética , RNA Viral/genética , Ribonucleoproteínas/genética , SARS-CoV-2/genética , COVID-19/virologia , Coronavirus Humano OC43/genética , Coronavirus Humano OC43/patogenicidade , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Ligação Proteica/genética , Mapas de Interação de Proteínas/genética , Proteínas de Ligação a RNA/genética , SARS-CoV-2/patogenicidade , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética , Transcriptoma/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Replicação Viral/genética , Antígeno SS-B
8.
Mol Cell ; 81(18): 3820-3832.e7, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34233158

RESUMO

A metabolic imbalance between lipid synthesis and degradation can lead to hepatic lipid accumulation, a characteristic of patients with non-alcoholic fatty liver disease (NAFLD). Here, we report that high-fat-diet-induced sterol regulatory element-binding protein (SREBP)-1c, a key transcription factor that regulates lipid biosynthesis, impairs autophagic lipid catabolism via altered H2S signaling. SREBP-1c reduced cystathionine gamma-lyase (CSE) via miR-216a, which in turn decreased hepatic H2S levels and sulfhydration-dependent activation of Unc-51-like autophagy-activating kinase 1 (ULK1). Furthermore, Cys951Ser mutation of ULK1 decreased autolysosome formation and promoted hepatic lipid accumulation in mice, suggesting that the loss of ULK1 sulfhydration was directly associated with the pathogenesis of NAFLD. Moreover, silencing of CSE in SREBP-1c knockout mice increased liver triglycerides, confirming the connection between CSE, autophagy, and SREBP-1c. Overall, our results uncover a 2-fold mechanism for SREBP-1c-driven hepatic lipid accumulation through reciprocal activation and inhibition of hepatic lipid biosynthesis and degradation, respectively.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Fígado Gorduroso/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/fisiologia , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Lipogênese , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/fisiologia , Triglicerídeos/metabolismo
9.
Nature ; 601(7892): 217-222, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022589

RESUMO

The use of lithium metal anodes in solid-state batteries has emerged as one of the most promising technologies for replacing conventional lithium-ion batteries1,2. Solid-state electrolytes are a key enabling technology for the safe operation of lithium metal batteries as they suppress the uncontrolled growth of lithium dendrites. However, the mechanical properties and electrochemical performance of current solid-state electrolytes do not meet the requirements for practical applications of lithium metal batteries. Here we report a class of elastomeric solid-state electrolytes with a three-dimensional interconnected plastic crystal phase. The elastomeric electrolytes show a combination of mechanical robustness, high ionic conductivity, low interfacial resistance and high lithium-ion transference number. The in situ-formed elastomer electrolyte on copper foils accommodates volume changes for prolonged lithium plating and stripping processes with a Coulombic efficiency of 100.0 per cent. Moreover, the elastomer electrolytes enable stable operation of the full cells under constrained conditions of a limited lithium source, a thin electrolyte and a high-loading LiNi0.83Mn0.06Co0.11O2 cathode at a high voltage of 4.5 volts at ambient temperature, delivering a high specific energy exceeding 410 watt-hours per kilogram of electrode plus electrolyte. The elastomeric electrolyte system presents a powerful strategy for enabling stable operation of high-energy, solid-state lithium batteries.


Assuntos
Eletrólitos , Lítio , Elastômeros
10.
Nature ; 603(7901): 434-438, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296844

RESUMO

Oxidation can deteriorate the properties of copper that are critical for its use, particularly in the semiconductor industry and electro-optics applications1-7. This has prompted numerous studies exploring copper oxidation and possible passivation strategies8. In situ observations have, for example, shown that oxidation involves stepped surfaces: Cu2O growth occurs on flat surfaces as a result of Cu adatoms detaching from steps and diffusing across terraces9-11. But even though this mechanism explains why single-crystalline copper is more resistant to oxidation than polycrystalline copper, the fact that flat copper surfaces can be free of oxidation has not been explored further. Here we report the fabrication of copper thin films that are semi-permanently oxidation resistant because they consist of flat surfaces with only occasional mono-atomic steps. First-principles calculations confirm that mono-atomic step edges are as impervious to oxygen as flat surfaces and that surface adsorption of O atoms is suppressed once an oxygen face-centred cubic (fcc) surface site coverage of 50% has been reached. These combined effects explain the exceptional oxidation resistance of ultraflat Cu surfaces.

11.
Nature ; 603(7902): 631-636, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322249

RESUMO

Metastable phases-kinetically favoured structures-are ubiquitous in nature1,2. Rather than forming thermodynamically stable ground-state structures, crystals grown from high-energy precursors often initially adopt metastable structures depending on the initial conditions, such as temperature, pressure or crystal size1,3,4. As the crystals grow further, they typically undergo a series of transformations from metastable phases to lower-energy and ultimately energetically stable phases1,3,4. Metastable phases sometimes exhibit superior physicochemical properties and, hence, the discovery and synthesis of new metastable phases are promising avenues for innovations in materials science1,5. However, the search for metastable materials has mainly been heuristic, performed on the basis of experiences, intuition or even speculative predictions, namely 'rules of thumb'. This limitation necessitates the advent of a new paradigm to discover new metastable phases based on rational design. Such a design rule is embodied in the discovery of a metastable hexagonal close-packed (hcp) palladium hydride (PdHx) synthesized in a liquid cell transmission electron microscope. The metastable hcp structure is stabilized through a unique interplay between the precursor concentrations in the solution: a sufficient supply of hydrogen (H) favours the hcp structure on the subnanometre scale, and an insufficient supply of Pd inhibits further growth and subsequent transition towards the thermodynamically stable face-centred cubic structure. These findings provide thermodynamic insights into metastability engineering strategies that can be deployed to discover new metastable phases.

12.
Mol Cell ; 78(6): 1224-1236.e5, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32442398

RESUMO

Strand selection is a critical step in microRNA (miRNA) biogenesis. Although the dominant strand may change depending on cellular contexts, the molecular mechanism and physiological significance of such alternative strand selection (or "arm switching") remain elusive. Here we find miR-324 to be one of the strongly regulated miRNAs by arm switching and identify the terminal uridylyl transferases TUT4 and TUT7 to be the key regulators. Uridylation of pre-miR-324 by TUT4/7 re-positions DICER on the pre-miRNA and shifts the cleavage site. This alternative processing produces a duplex with a different terminus from which the 3' strand (3p) is selected instead of the 5' strand (5p). In glioblastoma, the TUT4/7 and 3p levels are upregulated, whereas the 5p level is reduced. Manipulation of the strand ratio is sufficient to impair glioblastoma cell proliferation. This study uncovers a role of uridylation as a molecular switch in alternative strand selection and implicates its therapeutic potential.


Assuntos
MicroRNAs/metabolismo , UDPglucose-Hexose-1-Fosfato Uridiltransferase/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Camundongos , MicroRNAs/genética , Cultura Primária de Células , RNA Nucleotidiltransferases/metabolismo , Ribonuclease III/metabolismo
13.
Immunity ; 48(4): 787-798.e4, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29653697

RESUMO

Psoriasis is a chronic autoinflammatory skin disease. Although interleukin-17, derived from lymphocytes, has been shown to be critical in psoriasis, the initiation and maintenance of chronic skin inflammation has not been well understood. IL-25 (also called IL-17E), another IL-17 family cytokine, is well known to regulate allergic responses and type 2 immunity. Here we have shown that IL-25, also highly expressed in the lesional skin of psoriasis patients, was regulated by IL-17 in murine skin of a imiquimod (IMQ)-induced psoriasis model. IL-25 injection induced skin inflammation, whereas germline or keratinocyte-specific deletion of IL-25 caused resistance to IMQ-induced psoriasis. Via IL-17RB expression in keratinocytes, IL-25 stimulated the proliferation of keratinocytes and induced the production of inflammatory cytokines and chemokines, via activation of the STAT3 transcription factor. Thus, our data demonstrate that an IL-17-induced autoregulatory circuit in keratinocytes is mediated by IL-25 and suggest that this circuit could be targeted in the treatment of psoriasis patients.


Assuntos
Interleucina-17/imunologia , Psoríase/imunologia , Receptores de Interleucina-17/imunologia , Receptores de Interleucina/imunologia , Fator de Transcrição STAT3/metabolismo , Pele/patologia , Animais , Linhagem Celular , Proliferação de Células , Ativação Enzimática , Células HEK293 , Humanos , Imiquimode/toxicidade , Inflamação/imunologia , Inflamação/patologia , Interleucina-17/genética , Queratinócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Psoríase/induzido quimicamente , Psoríase/patologia , Pele/imunologia
14.
Cell ; 151(2): 414-26, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23063129

RESUMO

Diabetes, obesity, and cancer affect upward of 15% of the world's population. Interestingly, all three diseases juxtapose dysregulated intracellular signaling with altered metabolic state. Exactly which genetic factors define stable metabolic set points in vivo remains poorly understood. Here, we show that hedgehog signaling rewires cellular metabolism. We identify a cilium-dependent Smo-Ca(2+)-Ampk axis that triggers rapid Warburg-like metabolic reprogramming within minutes of activation and is required for proper metabolic selectivity and flexibility. We show that Smo modulators can uncouple the Smo-Ampk axis from canonical signaling and identify cyclopamine as one of a new class of "selective partial agonists," capable of concomitant inhibition of canonical and activation of noncanonical hedgehog signaling. Intriguingly, activation of the Smo-Ampk axis in vivo drives robust insulin-independent glucose uptake in muscle and brown adipose tissue. These data identify multiple noncanonical endpoints that are pivotal for rational design of hedgehog modulators and provide a new therapeutic avenue for obesity and diabetes.


Assuntos
Tecido Adiposo Marrom/metabolismo , Glicólise , Proteínas Hedgehog/metabolismo , Células Musculares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Quinases Proteína-Quinases Ativadas por AMP , Adipócitos/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Cílios/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Camundongos , Neoplasias/metabolismo , Obesidade/metabolismo , Proteínas Quinases/metabolismo , Receptor Smoothened
15.
Nature ; 594(7862): 207-212, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108699

RESUMO

Chip floorplanning is the engineering task of designing the physical layout of a computer chip. Despite five decades of research1, chip floorplanning has defied automation, requiring months of intense effort by physical design engineers to produce manufacturable layouts. Here we present a deep reinforcement learning approach to chip floorplanning. In under six hours, our method automatically generates chip floorplans that are superior or comparable to those produced by humans in all key metrics, including power consumption, performance and chip area. To achieve this, we pose chip floorplanning as a reinforcement learning problem, and develop an edge-based graph convolutional neural network architecture capable of learning rich and transferable representations of the chip. As a result, our method utilizes past experience to become better and faster at solving new instances of the problem, allowing chip design to be performed by artificial agents with more experience than any human designer. Our method was used to design the next generation of Google's artificial intelligence (AI) accelerators, and has the potential to save thousands of hours of human effort for each new generation. Finally, we believe that more powerful AI-designed hardware will fuel advances in AI, creating a symbiotic relationship between the two fields.

16.
Mol Cell ; 73(3): 505-518.e5, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30554947

RESUMO

Microprocessor, composed of DROSHA and its cofactor DGCR8, initiates microRNA (miRNA) biogenesis by processing the primary transcripts of miRNA (pri-miRNAs). Here we investigate the mechanism by which Microprocessor selects the cleavage site with single-nucleotide precision, which is crucial for the specificity and functionality of miRNAs. By testing ∼40,000 pri-miRNA variants, we find that for some pri-miRNAs the cleavage site is dictated mainly by the mGHG motif embedded in the lower stem region of pri-miRNA. Structural modeling and deep-sequencing-based complementation experiments show that the double-stranded RNA-binding domain (dsRBD) of DROSHA recognizes mGHG to place the catalytic center in the appropriate position. The mGHG motif as well as the mGHG-recognizing residues in DROSHA dsRBD are conserved across eumetazoans, suggesting that this mechanism emerged in an early ancestor of the animal lineage. Our findings provide a basis for the understanding of miRNA biogenesis and rational design of accurate small-RNA-based gene silencing.


Assuntos
MicroRNAs/metabolismo , Motivos de Nucleotídeos , Processamento Pós-Transcricional do RNA , Ribonuclease III/metabolismo , Células HCT116 , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/química , MicroRNAs/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/genética , Relação Estrutura-Atividade , Especificidade por Substrato
17.
Proc Natl Acad Sci U S A ; 121(19): e2321438121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687782

RESUMO

Successful CRISPR/Cas9-based gene editing in skeletal muscle is dependent on efficient propagation of Cas9 to all myonuclei in the myofiber. However, nuclear-targeted gene therapy cargos are strongly restricted to their myonuclear domain of origin. By screening nuclear localization signals and nuclear export signals, we identify "Myospreader," a combination of short peptide sequences that promotes myonuclear propagation. Appending Myospreader to Cas9 enhances protein stability and myonuclear propagation in myoblasts and myofibers. AAV-delivered Myospreader dCas9 better inhibits transcription of toxic RNA in a myotonic dystrophy mouse model. Furthermore, Myospreader Cas9 achieves higher rates of gene editing in CRISPR reporter and Duchenne muscular dystrophy mouse models. Myospreader reveals design principles relevant to all nuclear-targeted gene therapies and highlights the importance of the spatial dimension in therapeutic development.


Assuntos
Sistemas CRISPR-Cas , Núcleo Celular , Edição de Genes , Terapia Genética , Músculo Esquelético , Distrofia Muscular de Duchenne , Edição de Genes/métodos , Animais , Camundongos , Músculo Esquelético/metabolismo , Núcleo Celular/metabolismo , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/genética , Humanos , Sinais de Localização Nuclear/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Modelos Animais de Doenças , Mioblastos/metabolismo
18.
Proc Natl Acad Sci U S A ; 121(22): e2404007121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768347

RESUMO

Sensations of heat and touch produced by receptors in the skin are of essential importance for perceptions of the physical environment, with a particularly powerful role in interpersonal interactions. Advances in technologies for replicating these sensations in a programmable manner have the potential not only to enhance virtual/augmented reality environments but they also hold promise in medical applications for individuals with amputations or impaired sensory function. Engineering challenges are in achieving interfaces with precise spatial resolution, power-efficient operation, wide dynamic range, and fast temporal responses in both thermal and in physical modulation, with forms that can extend over large regions of the body. This paper introduces a wireless, skin-compatible interface for thermo-haptic modulation designed to address some of these challenges, with the ability to deliver programmable patterns of enhanced vibrational displacement and high-speed thermal stimulation. Experimental and computational investigations quantify the thermal and mechanical efficiency of a vertically stacked design layout in the thermo-haptic stimulators that also supports real-time, closed-loop control mechanisms. The platform is effective in conveying thermal and physical information through the skin, as demonstrated in the control of robotic prosthetics and in interactions with pressure/temperature-sensitive touch displays.


Assuntos
Tato , Realidade Virtual , Tecnologia sem Fio , Humanos , Tecnologia sem Fio/instrumentação , Tato/fisiologia , Pele , Robótica/instrumentação , Robótica/métodos
19.
Physiol Rev ; 99(1): 427-511, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427277

RESUMO

Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of the α-motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems.


Assuntos
Envelhecimento/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/fisiopatologia , Sarcopenia/fisiopatologia , Animais , Humanos , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Junção Neuromuscular/metabolismo , Sarcopenia/metabolismo
20.
Genome Res ; 33(9): 1455-1464, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37793781

RESUMO

Assisted reproductive technologies (ARTs), including in vitro maturation and fertilization (IVF), are increasingly used in human and animal reproduction. Whether these technologies directly affect the rate of de novo mutation (DNM), and to what extent, has been a matter of debate. Here we take advantage of domestic cattle, characterized by complex pedigrees that are ideally suited to detect DNMs and by the systematic use of ART, to study the rate of de novo structural variation (dnSV) in this species and how it is impacted by IVF. By exploiting features of associated de novo point mutations (dnPMs) and dnSVs in clustered DNMs, we provide strong evidence that (1) IVF increases the rate of dnSV approximately fivefold, and (2) the corresponding mutations occur during the very early stages of embryonic development (one- and two-cell stage), yet primarily affect the paternal genome.


Assuntos
Desenvolvimento Embrionário , Família , Gravidez , Feminino , Animais , Bovinos , Humanos , Mutação , Linhagem , Genoma Humano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA