Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Am J Hum Genet ; 107(6): 1129-1148, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33186545

RESUMO

The endosomal sorting complexes required for transport (ESCRTs) are essential for multiple membrane modeling and membrane-independent cellular processes. Here we describe six unrelated individuals with de novo missense variants affecting the ATPase domain of VPS4A, a critical enzyme regulating ESCRT function. Probands had structural brain abnormalities, severe neurodevelopmental delay, cataracts, growth impairment, and anemia. In cultured cells, overexpression of VPS4A mutants caused enlarged endosomal vacuoles resembling those induced by expression of known dominant-negative ATPase-defective forms of VPS4A. Proband-derived fibroblasts had enlarged endosomal structures with abnormal accumulation of the ESCRT protein IST1 on the limiting membrane. VPS4A function was also required for normal endosomal morphology and IST1 localization in iPSC-derived human neurons. Mutations affected other ESCRT-dependent cellular processes, including regulation of centrosome number, primary cilium morphology, nuclear membrane morphology, chromosome segregation, mitotic spindle formation, and cell cycle progression. We thus characterize a distinct multisystem disorder caused by mutations affecting VPS4A and demonstrate that its normal function is required for multiple human developmental and cellular processes.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , ATPases Vacuolares Próton-Translocadoras/genética , Alelos , Animais , Encéfalo/anormalidades , Ciclo Celular , Centrossomo/metabolismo , Endossomos/metabolismo , Fibroblastos/metabolismo , Genômica , Células HEK293 , Células HeLa , Humanos , Camundongos , Neurônios/metabolismo , Domínios Proteicos , Transporte Proteico , Fuso Acromático/metabolismo
2.
Am J Hum Genet ; 105(5): 933-946, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31607427

RESUMO

Trio-based whole-exome sequence (WES) data have established confident genetic diagnoses in ∼40% of previously undiagnosed individuals recruited to the Deciphering Developmental Disorders (DDD) study. Here we aim to use the breadth of phenotypic information recorded in DDD to augment diagnosis and disease variant discovery in probands. Median Euclidean distances (mEuD) were employed as a simple measure of similarity of quantitative phenotypic data within sets of ≥10 individuals with plausibly causative de novo mutations (DNM) in 28 different developmental disorder genes. 13/28 (46.4%) showed significant similarity for growth or developmental milestone metrics, 10/28 (35.7%) showed similarity in HPO term usage, and 12/28 (43%) showed no phenotypic similarity. Pairwise comparisons of individuals with high-impact inherited variants to the 32 individuals with causative DNM in ANKRD11 using only growth z-scores highlighted 5 likely causative inherited variants and two unrecognized DNM resulting in an 18% diagnostic uplift for this gene. Using an independent approach, naive Bayes classification of growth and developmental data produced reasonably discriminative models for the 24 DNM genes with sufficiently complete data. An unsupervised naive Bayes classification of 6,993 probands with WES data and sufficient phenotypic information defined 23 in silico syndromes (ISSs) and was used to test a "phenotype first" approach to the discovery of causative genotypes using WES variants strictly filtered on allele frequency, mutation consequence, and evidence of constraint in humans. This highlighted heterozygous de novo nonsynonymous variants in SPTBN2 as causative in three DDD probands.


Assuntos
Deficiências do Desenvolvimento/genética , Teorema de Bayes , Criança , Nanismo/genética , Exoma/genética , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Heterozigoto , Humanos , Masculino , Mutação/genética , Fenótipo , Proteínas Repressoras/genética , Espectrina/genética , Sequenciamento do Exoma
3.
Am J Hum Genet ; 104(4): 709-720, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30905399

RESUMO

The Mediator is an evolutionarily conserved, multi-subunit complex that regulates multiple steps of transcription. Mediator activity is regulated by the reversible association of a four-subunit module comprising CDK8 or CDK19 kinases, together with cyclin C, MED12 or MED12L, and MED13 or MED13L. Mutations in MED12, MED13, and MED13L were previously identified in syndromic developmental disorders with overlapping phenotypes. Here, we report CDK8 mutations (located at 13q12.13) that cause a phenotypically related disorder. Using whole-exome or whole-genome sequencing, and by international collaboration, we identified eight different heterozygous missense CDK8 substitutions, including 10 shown to have arisen de novo, in 12 unrelated subjects; a recurrent mutation, c.185C>T (p.Ser62Leu), was present in five individuals. All predicted substitutions localize to the ATP-binding pocket of the kinase domain. Affected individuals have overlapping phenotypes characterized by hypotonia, mild to moderate intellectual disability, behavioral disorders, and variable facial dysmorphism. Congenital heart disease occurred in six subjects; additional features present in multiple individuals included agenesis of the corpus callosum, ano-rectal malformations, seizures, and hearing or visual impairments. To evaluate the functional impact of the mutations, we measured phosphorylation at STAT1-Ser727, a known CDK8 substrate, in a CDK8 and CDK19 CRISPR double-knockout cell line transfected with wild-type (WT) or mutant CDK8 constructs. These experiments demonstrated a reduction in STAT1 phosphorylation by all mutants, in most cases to a similar extent as in a kinase-dead control. We conclude that missense mutations in CDK8 cause a developmental disorder that has phenotypic similarity to syndromes associated with mutations in other subunits of the Mediator kinase module, indicating probable overlap in pathogenic mechanisms.


Assuntos
Quinase 8 Dependente de Ciclina/genética , Deficiências do Desenvolvimento/genética , Complexo Mediador/genética , Mutação de Sentido Incorreto , Encéfalo/anormalidades , Criança , Pré-Escolar , Ciclina C/genética , Quinases Ciclina-Dependentes/genética , Exoma , Feminino , Cardiopatias Congênitas/genética , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Mutação , Fenótipo , Fosforilação , Síndrome
4.
Genet Med ; 24(6): 1261-1273, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35341651

RESUMO

PURPOSE: This study aimed to undertake a multidisciplinary characterization of the phenotype associated with SOX11 variants. METHODS: Individuals with protein altering variants in SOX11 were identified through exome and genome sequencing and international data sharing. Deep clinical phenotyping was undertaken by referring clinicians. Blood DNA methylation was assessed using Infinium MethylationEPIC array. The expression pattern of SOX11 in developing human brain was defined using RNAscope. RESULTS: We reported 38 new patients with SOX11 variants. Idiopathic hypogonadotropic hypogonadism was confirmed as a feature of SOX11 syndrome. A distinctive pattern of blood DNA methylation was identified in SOX11 syndrome, separating SOX11 syndrome from other BAFopathies. CONCLUSION: SOX11 syndrome is a distinct clinical entity with characteristic clinical features and episignature differentiating it from BAFopathies.


Assuntos
Metilação de DNA , Hipogonadismo , Síndrome de Klinefelter , Transtornos do Neurodesenvolvimento , Fatores de Transcrição SOXC , Metilação de DNA/genética , Humanos , Hipogonadismo/genética , Síndrome de Klinefelter/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Fatores de Transcrição SOXC/genética , Sequenciamento do Exoma
5.
Am J Hum Genet ; 102(6): 1195-1203, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29861108

RESUMO

Next-generation sequencing is a powerful tool for the discovery of genes related to neurodevelopmental disorders (NDDs). Here, we report the identification of a distinct syndrome due to de novo or inherited heterozygous mutations in Tousled-like kinase 2 (TLK2) in 38 unrelated individuals and two affected mothers, using whole-exome and whole-genome sequencing technologies, matchmaker databases, and international collaborations. Affected individuals had a consistent phenotype, characterized by mild-borderline neurodevelopmental delay (86%), behavioral disorders (68%), severe gastro-intestinal problems (63%), and facial dysmorphism including blepharophimosis (82%), telecanthus (74%), prominent nasal bridge (68%), broad nasal tip (66%), thin vermilion of the upper lip (62%), and upslanting palpebral fissures (55%). Analysis of cell lines from three affected individuals showed that mutations act through a loss-of-function mechanism in at least two case subjects. Genotype-phenotype analysis and comparison of computationally modeled faces showed that phenotypes of these and other individuals with loss-of-function variants significantly overlapped with phenotypes of individuals with other variant types (missense and C-terminal truncating). This suggests that haploinsufficiency of TLK2 is the most likely underlying disease mechanism, leading to a consistent neurodevelopmental phenotype. This work illustrates the power of international data sharing, by the identification of 40 individuals from 26 different centers in 7 different countries, allowing the identification, clinical delineation, and genotype-phenotype evaluation of a distinct NDD caused by mutations in TLK2.


Assuntos
Estudos de Associação Genética , Padrões de Herança/genética , Mutação com Perda de Função/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas Quinases/genética , Adolescente , Adulto , Sequência de Bases , Linhagem Celular , Criança , Pré-Escolar , Fácies , Feminino , Humanos , Lactente , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Translocação Genética , Adulto Jovem
6.
Am J Hum Genet ; 103(2): 305-316, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30057029

RESUMO

Next-generation sequencing combined with international data sharing has enormously facilitated identification of new disease-associated genes and mutations. This is particularly true for genetically extremely heterogeneous entities such as neurodevelopmental disorders (NDDs). Through exome sequencing and world-wide collaborations, we identified and assembled 20 individuals with de novo variants in FBXO11. They present with mild to severe developmental delay associated with a range of features including short (4/20) or tall (2/20) stature, obesity (5/20), microcephaly (4/19) or macrocephaly (2/19), behavioral problems (17/20), seizures (5/20), cleft lip or palate or bifid uvula (3/20), and minor skeletal anomalies. FBXO11 encodes a member of the F-Box protein family, constituting a subunit of an E3-ubiquitin ligase complex. This complex is involved in ubiquitination and proteasomal degradation and thus in controlling critical biological processes by regulating protein turnover. The identified de novo aberrations comprise two large deletions, ten likely gene disrupting variants, and eight missense variants distributed throughout FBXO11. Structural modeling for missense variants located in the CASH or the Zinc-finger UBR domains suggests destabilization of the protein. This, in combination with the observed spectrum and localization of identified variants and the lack of apparent genotype-phenotype correlations, is compatible with loss of function or haploinsufficiency as an underlying mechanism. We implicate de novo missense and likely gene disrupting variants in FBXO11 in a neurodevelopmental disorder with variable intellectual disability and various other features.


Assuntos
Proteínas F-Box/genética , Variação Genética/genética , Transtornos do Neurodesenvolvimento/genética , Proteína-Arginina N-Metiltransferases/genética , Criança , Exoma/genética , Feminino , Estudos de Associação Genética/métodos , Humanos , Deficiência Intelectual/genética , Masculino , Microcefalia/genética , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Sequenciamento do Exoma/métodos
8.
Genet Med ; 22(1): 124-131, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31316167

RESUMO

PURPOSE: Congenital contractural arachnodactyly (CCA) is an autosomal dominant connective tissue disorder manifesting joint contractures, arachnodactyly, crumpled ears, and kyphoscoliosis as main features. Due to its rarity, rather aspecific clinical presentation, and overlap with other conditions including Marfan syndrome, the diagnosis is challenging, but important for prognosis and clinical management. CCA is caused by pathogenic variants in FBN2, encoding fibrillin-2, but locus heterogeneity has been suggested. We designed a clinical scoring system and diagnostic criteria to support the diagnostic process and guide molecular genetic testing. METHODS: In this retrospective study, we assessed 167 probands referred for FBN2 analysis and classified them into a FBN2-positive (n = 44) and FBN2-negative group (n = 123) following molecular analysis. We developed a 20-point weighted clinical scoring system based on the prevalence of ten main clinical characteristics of CCA in both groups. RESULTS: The total score was significantly different between the groups (P < 0.001) and was indicative for classifying patients into unlikely CCA (total score <7) and likely CCA (total score ≥7) groups. CONCLUSIONS: Our clinical score is helpful for clinical guidance for patients suspected to have CCA, and provides a quantitative tool for phenotyping in research settings.


Assuntos
Aracnodactilia/diagnóstico , Contratura/diagnóstico , Fibrilina-2/genética , Análise de Sequência de DNA/métodos , Aracnodactilia/genética , Criança , Contratura/genética , Diagnóstico Diferencial , Diagnóstico Precoce , Feminino , Testes Genéticos , Humanos , Masculino , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Fenótipo , Estudos Retrospectivos , Sensibilidade e Especificidade
9.
Am J Med Genet A ; 182(4): 713-720, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31926053

RESUMO

Developmental and Epileptic encephalopathies (DEE) describe heterogeneous epilepsy syndromes, characterized by early-onset, refractory seizures and developmental delay (DD). Several DEE associated genes have been reported. With increased access to whole exome sequencing (WES), new candidate genes are being identified although there are fewer large cohort papers describing the clinical phenotype in such patients. We describe 6 unreported individuals and provide updated information on an additional previously reported individual with heterozygous de novo missense variants in YWHAG. We describe a syndromal phenotype, report 5 novel, and a recurrent p.Arg132Cys YWHAG variant and compare developmental trajectory and treatment strategies in this cohort. We provide further evidence of causality in YWHAG variants. WES was performed in five patients via Deciphering Developmental Disorders Study and the remaining two were identified via Genematcher and AnnEX databases. De novo variants identified from exome data were validated using Sanger sequencing. Seven out of seven patients in the cohort have de novo, heterozygous missense variants in YWHAG including 2/7 patients with a recurrent c.394C > T, p.Arg132Cys variant; 1/7 has a second, pathogenic variant in STAG1. Characteristic features included: early-onset seizures, predominantly generalized tonic-clonic and absence type (7/7) with good response to standard anti-epileptic medications; moderate DD; Intellectual Disability (ID) (5/7) and Autism Spectrum Disorder (3/7). De novo YWHAG missense variants cause EE, characterized by early-onset epilepsy, ID and DD, supporting the hypothesis that YWHAG loss-of-function causes a neurological phenotype. Although the exact mechanism of disease resulting from alterations in YWHAG is not fully known, it is possible that haploinsufficiency of YWHAG in developing cerebral cortex may lead to abnormal neuronal migration resulting in DEE.


Assuntos
Proteínas 14-3-3/genética , Síndromes Epilépticas/etiologia , Estudos de Associação Genética , Heterozigoto , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/etiologia , Adolescente , Criança , Pré-Escolar , Síndromes Epilépticas/patologia , Feminino , Humanos , Masculino , Transtornos do Neurodesenvolvimento/patologia
10.
PLoS Genet ; 13(3): e1006679, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28301481

RESUMO

3MC syndrome is an autosomal recessive heterogeneous disorder with features linked to developmental abnormalities. The main features include facial dysmorphism, craniosynostosis and cleft lip/palate; skeletal structures derived from cranial neural crest cells (cNCC). We previously reported that lectin complement pathway genes COLEC11 and MASP1/3 are mutated in 3MC syndrome patients. Here we define a new gene, COLEC10, also mutated in 3MC families and present novel mutations in COLEC11 and MASP1/3 genes in a further five families. The protein products of COLEC11 and COLEC10, CL-K1 and CL-L1 respectively, form heteromeric complexes. We show COLEC10 is expressed in the base membrane of the palate during murine embryo development. We demonstrate how mutations in COLEC10 (c.25C>T; p.Arg9Ter, c.226delA; p.Gly77Glufs*66 and c.528C>G p.Cys176Trp) impair the expression and/or secretion of CL-L1 highlighting their pathogenicity. Together, these findings provide further evidence linking the lectin complement pathway and complement factors COLEC11 and COLEC10 to morphogenesis of craniofacial structures and 3MC etiology.


Assuntos
Anormalidades Múltiplas/genética , Fissura Palatina/genética , Colectinas/genética , Anormalidades Craniofaciais/genética , Craniossinostoses/genética , Mutação , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Animais , Sequência de Bases , Western Blotting , Linhagem Celular , Fissura Palatina/metabolismo , Colectinas/metabolismo , Anormalidades Craniofaciais/metabolismo , Craniossinostoses/metabolismo , Exoma/genética , Saúde da Família , Feminino , Predisposição Genética para Doença/genética , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Análise de Sequência de DNA/métodos , Síndrome
11.
PLoS Genet ; 13(1): e1006470, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28081210

RESUMO

Orofacial clefting is amongst the most common of birth defects, with both genetic and environmental components. Although numerous studies have been undertaken to investigate the complexities of the genetic etiology of this heterogeneous condition, this factor remains incompletely understood. Here, we describe mutations in the HYAL2 gene as a cause of syndromic orofacial clefting. HYAL2, encoding hyaluronidase 2, degrades extracellular hyaluronan, a critical component of the developing heart and palatal shelf matrix. Transfection assays demonstrated that the gene mutations destabilize the molecule, dramatically reducing HYAL2 protein levels. Consistent with the clinical presentation in affected individuals, investigations of Hyal2-/- mice revealed craniofacial abnormalities, including submucosal cleft palate. In addition, cor triatriatum sinister and hearing loss, identified in a proportion of Hyal2-/- mice, were also found as incompletely penetrant features in affected humans. Taken together our findings identify a new genetic cause of orofacial clefting in humans and mice, and define the first molecular cause of human cor triatriatum sinister, illustrating the fundamental importance of HYAL2 and hyaluronan turnover for normal human and mouse development.


Assuntos
Moléculas de Adesão Celular/genética , Fenda Labial/genética , Fissura Palatina/genética , Coração Triatriado/genética , Hialuronoglucosaminidase/genética , Mutação , Adolescente , Animais , Criança , Pré-Escolar , Fenda Labial/patologia , Fissura Palatina/patologia , Coração Triatriado/patologia , Feminino , Proteínas Ligadas por GPI/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linhagem , Penetrância , Síndrome
12.
Cleft Palate Craniofac J ; 57(4): 514-519, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31607140

RESUMO

We present a family with a previously undescribed abnormality of the palate and oropharynx which involved the absence of the uvula and the anterior pillar of the fauces, rudimentary posterior pillar of the fauces, and hypernasality. Eight family members over 4 generations are affected in a pattern consistent with autosomal dominant inheritance. A causal role for the FOXF2 gene has been identified and previously reported. We describe the management of the proband, which involved attempting to lengthen the palate and to retroposition the abnormally anteriorly directed velar musculature, along with speech therapy.


Assuntos
Fissura Palatina , Insuficiência Velofaríngea , Fatores de Transcrição Forkhead , Humanos , Palato Mole , Faringe , Síndrome , Úvula
13.
Hum Mutat ; 40(8): 1013-1029, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31021519

RESUMO

SATB2-associated syndrome (SAS) is an autosomal dominant neurodevelopmental disorder caused by alterations in the SATB2 gene. Here we present a review of published pathogenic variants in the SATB2 gene to date and report 38 novel alterations found in 57 additional previously unreported individuals. Overall, we present a compilation of 120 unique variants identified in 155 unrelated families ranging from single nucleotide coding variants to genomic rearrangements distributed throughout the entire coding region of SATB2. Single nucleotide variants predicted to result in the occurrence of a premature stop codon were the most commonly seen (51/120 = 42.5%) followed by missense variants (31/120 = 25.8%). We review the rather limited functional characterization of pathogenic variants and discuss current understanding of the consequences of the different molecular alterations. We present an expansive phenotypic review along with novel genotype-phenotype correlations. Lastly, we discuss current knowledge of animal models and present future prospects. This review should help provide better guidance for the care of individuals diagnosed with SAS.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Adolescente , Animais , Criança , Pré-Escolar , Códon de Terminação , Modelos Animais de Doenças , Feminino , Rearranjo Gênico , Estudos de Associação Genética , Humanos , Masculino , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único
14.
Am J Med Genet C Semin Med Genet ; 181(4): 557-564, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31721432

RESUMO

CHD8 has been reported as an autism susceptibility/intellectual disability gene but emerging evidence suggests that it additionally causes an overgrowth phenotype. This study reports 27 unrelated patients with pathogenic or likely pathogenic CHD8 variants (25 null variants, two missense variants) and a male:female ratio of 21:6 (3.5:1, p < .01). All patients presented with intellectual disability, with 85% in the mild or moderate range, and 85% had a height and/or head circumference ≥2 standard deviations above the mean, meeting our clinical criteria for overgrowth. Behavioral problems were reported in the majority of patients (78%), with over half (56%) either formally diagnosed with an autistic spectrum disorder or described as having autistic traits. Additional clinical features included neonatal hypotonia (33%), and less frequently seizures, pes planus, scoliosis, fifth finger clinodactyly, umbilical hernia, and glabellar hemangioma (≤15% each). These results suggest that, in addition to its established link with autism and intellectual disability, CHD8 causes an overgrowth phenotype, and should be considered in the differential diagnosis of patients presenting with increased height and/or head circumference in association with intellectual disability.


Assuntos
Caderinas/genética , Transtornos do Crescimento/genética , Fenótipo , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Síndrome , Adulto Jovem
15.
Genet Med ; 21(4): 850-860, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30245513

RESUMO

PURPOSE: Pathogenic variants in KAT6A have recently been identified as a cause of syndromic developmental delay. Within 2 years, the number of patients identified with pathogenic KAT6A variants has rapidly expanded and the full extent and variability of the clinical phenotype has not been reported. METHODS: We obtained data for patients with KAT6A pathogenic variants through three sources: treating clinicians, an online family survey distributed through social media, and a literature review. RESULTS: We identified 52 unreported cases, bringing the total number of published cases to 76. Our results expand the genotypic spectrum of pathogenic variants to include missense and splicing mutations. We functionally validated a pathogenic splice-site variant and identified a likely hotspot location for de novo missense variants. The majority of clinical features in KAT6A syndrome have highly variable penetrance. For core features such as intellectual disability, speech delay, microcephaly, cardiac anomalies, and gastrointestinal complications, genotype- phenotype correlations show that late-truncating pathogenic variants (exons 16-17) are significantly more prevalent. We highlight novel associations, including an increased risk of gastrointestinal obstruction. CONCLUSION: Our data expand the genotypic and phenotypic spectrum for individuals with genetic pathogenic variants in KAT6A and we outline appropriate clinical management.


Assuntos
Deficiências do Desenvolvimento/genética , Histona Acetiltransferases/genética , Deficiência Intelectual/genética , Adolescente , Adulto , Criança , Pré-Escolar , Deleção Cromossômica , Deficiências do Desenvolvimento/fisiopatologia , Exoma/genética , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Lactente , Deficiência Intelectual/fisiopatologia , Masculino , Microcefalia/genética , Microcefalia/fisiopatologia , Mutação , Fenótipo , Isoformas de Proteínas/genética , Adulto Jovem
16.
Genet Med ; 21(6): 1295-1307, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30349098

RESUMO

PURPOSE: Pathogenic variants in ARID1B are one of the most frequent causes of intellectual disability (ID) as determined by large-scale exome sequencing studies. Most studies published thus far describe clinically diagnosed Coffin-Siris patients (ARID1B-CSS) and it is unclear whether these data are representative for patients identified through sequencing of unbiased ID cohorts (ARID1B-ID). We therefore sought to determine genotypic and phenotypic differences between ARID1B-ID and ARID1B-CSS. In parallel, we investigated the effect of different methods of phenotype reporting. METHODS: Clinicians entered clinical data in an extensive web-based survey. RESULTS: 79 ARID1B-CSS and 64 ARID1B-ID patients were included. CSS-associated dysmorphic features, such as thick eyebrows, long eyelashes, thick alae nasi, long and/or broad philtrum, small nails and small or absent fifth distal phalanx and hypertrichosis, were observed significantly more often (p < 0.001) in ARID1B-CSS patients. No other significant differences were identified. CONCLUSION: There are only minor differences between ARID1B-ID and ARID1B-CSS patients. ARID1B-related disorders seem to consist of a spectrum, and patients should be managed similarly. We demonstrated that data collection methods without an explicit option to report the absence of a feature (such as most Human Phenotype Ontology-based methods) tended to underestimate gene-related features.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Proteínas Cromossômicas não Histona/genética , Exoma , Face/anormalidades , Feminino , Estudos de Associação Genética/métodos , Variação Genética/genética , Deformidades Congênitas da Mão/genética , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Micrognatismo/genética , Pessoa de Meia-Idade , Mutação , Pescoço/anormalidades , Penetrância
18.
Am J Med Genet A ; 179(10): 2049-2055, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31400068

RESUMO

Histone Gene Cluster 1 Member E, HIST1H1E, encodes Histone H1.4, is one of a family of epigenetic regulator genes, acts as a linker histone protein, and is responsible for higher order chromatin structure. HIST1H1E syndrome (also known as Rahman syndrome, OMIM #617537) is a recently described intellectual disability (ID) syndrome. Since the initial description of five unrelated individuals with three different heterozygous protein-truncating variants (PTVs) in the HIST1H1E gene in 2017, we have recruited 30 patients, all with HIST1H1E PTVs that result in the same shift in frame and that cluster to a 94-base pair region in the HIST1H1E carboxy terminal domain. The identification of 30 patients with HIST1H1E variants has allowed the clarification of the HIST1H1E syndrome phenotype. Major findings include an ID and a recognizable facial appearance. ID was reported in all patients and is most frequently of moderate severity. The facial gestalt consists of a high frontal hairline and full lower cheeks in early childhood and, in later childhood and adulthood, affected individuals have a strikingly high frontal hairline, frontal bossing, and deep-set eyes. Other associated clinical features include hypothyroidism, abnormal dentition, behavioral issues, cryptorchidism, skeletal anomalies, and cardiac anomalies. Brain magnetic resonance imaging (MRI) is frequently abnormal with a slender corpus callosum a frequent finding.


Assuntos
Fácies , Histonas/genética , Deficiência Intelectual/genética , Mutação/genética , Comportamento , Crescimento e Desenvolvimento , Heterozigoto , Humanos , Aprendizagem , Fenótipo , Síndrome
19.
Genet Med ; 19(8): 900-908, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28151491

RESUMO

PURPOSE: To characterize features associated with de novo mutations affecting SATB2 function in individuals ascertained on the basis of intellectual disability. METHODS: Twenty previously unreported individuals with 19 different SATB2 mutations (11 loss-of-function and 8 missense variants) were studied. Fibroblasts were used to measure mutant protein production. Subcellular localization and mobility of wild-type and mutant SATB2 were assessed using fluorescently tagged protein. RESULTS: Recurrent clinical features included neurodevelopmental impairment (19/19), absent/near absent speech (16/19), normal somatic growth (17/19), cleft palate (9/19), drooling (12/19), and dental anomalies (8/19). Six of eight missense variants clustered in the first CUT domain. Sibling recurrence due to gonadal mosaicism was seen in one family. A nonsense mutation in the last exon resulted in production of a truncated protein retaining all three DNA-binding domains. SATB2 nuclear mobility was mutation-dependent; p.Arg389Cys in CUT1 increased mobility and both p.Gly515Ser in CUT2 and p.Gln566Lys between CUT2 and HOX reduced mobility. The clinical features in individuals with missense variants were indistinguishable from those with loss of function. CONCLUSION: SATB2 haploinsufficiency is a common cause of syndromic intellectual disability. When mutant SATB2 protein is produced, the protein appears functionally inactive with a disrupted pattern of chromatin or matrix association.Genet Med advance online publication 02 February 2017.


Assuntos
Deficiência Intelectual/genética , Mutação com Perda de Função , Proteínas de Ligação à Região de Interação com a Matriz/genética , Mutação de Sentido Incorreto , Fatores de Transcrição/genética , Linhagem Celular , Estudos de Coortes , Estudos de Associação Genética , Haploinsuficiência/genética , Células HeLa , Humanos , Deficiência Intelectual/fisiopatologia , Proteínas de Ligação à Região de Interação com a Matriz/fisiologia , Ligação Proteica/genética , Fatores de Transcrição/fisiologia , Sequenciamento Completo do Genoma
20.
Epilepsia ; 58(4): 565-575, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28166369

RESUMO

OBJECTIVE: The phenotype of seizure clustering with febrile illnesses in infancy/early childhood is well recognized. To date the only genetic epilepsy consistently associated with this phenotype is PCDH19, an X-linked disorder restricted to females, and males with mosaicism. The SMC1A gene, which encodes a structural component of the cohesin complex is also located on the X chromosome. Missense variants and small in-frame deletions of SMC1A cause approximately 5% of Cornelia de Lange Syndrome (CdLS). Recently, protein truncating mutations in SMC1A have been reported in five females, all of whom have been affected by a drug-resistant epilepsy, and severe developmental impairment. Our objective was to further delineate the phenotype of SMC1A truncation. METHOD: Female cases with de novo truncation mutations in SMC1A were identified from the Deciphering Developmental Disorders (DDD) study (n = 8), from postmortem testing of an affected twin (n = 1), and from clinical testing with an epilepsy gene panel (n = 1). Detailed information on the phenotype in each case was obtained. RESULTS: Ten cases with heterozygous de novo mutations in the SMC1A gene are presented. All 10 mutations identified are predicted to result in premature truncation of the SMC1A protein. All cases are female, and none had a clinical diagnosis of CdLS. They presented with onset of epileptic seizures between <4 weeks and 28 months of age. In the majority of cases, a marked preponderance for seizures to occur in clusters was noted. Seizure clusters were associated with developmental regression. Moderate or severe developmental impairment was apparent in all cases. SIGNIFICANCE: Truncation mutations in SMC1A cause a severe epilepsy phenotype with cluster seizures in females. These mutations are likely to be nonviable in males.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Epilepsia/genética , Mutação/genética , Convulsões/genética , Criança , Pré-Escolar , Eletroencefalografia , Epilepsia/complicações , Feminino , Heterozigoto , Humanos , Masculino , Convulsões/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA