RESUMO
We investigate the evolution of the electronic structure of fused silica in a dense plasma regime using time-resolved x-ray absorption spectroscopy. We use a nanosecond (ns) laser beam to generate a strong uniform shock wave in the sample and a picosecond (ps) pulse to produce a broadband x-ray source near the Si K edge. By varying the delay between the two laser beams and the intensity of the ns beam, we explore a large thermodynamical domain with densities varying from 1 to 5 g/cm^{3} and temperatures up to 5 eV. In contrast to normal conditions where silica is a well-known insulator with a wide band gap of 8.9 eV, we find that shocked silica exhibits a pseudogap as a semimetal throughout this thermodynamical domain. This is in quantitative agreement with density functional theory predictions performed using the generalized gradient approximation.
RESUMO
We have probed, with time-resolved x-ray absorption near-edge spectroscopy (XANES), a femtosecond-laser-heated aluminum foil with fluences up to 1 J/cm2. The spectra reveal a loss of the short-range order in a few picoseconds. This time scale is compared with the electron-ion equilibration time, calculated with a two-temperature model. Hydrodynamic simulations shed light on complex features that affect the foil dynamics, including progressive density change from solid to liquid (â¼10 ps). In this density range, quantum molecular dynamics simulations indicate that XANES is a relevant probe of the ionic temperature.
RESUMO
X-ray absorption near-edge spectroscopy (XANES) is a powerful probe of electronic and atomic structures in various media, ranging from molecules to condensed matter. We show how ultrafast time resolution opens new possibilities to investigate highly nonequilibrium states of matter including phase transitions. Based on a tabletop laser-plasma ultrafast x-ray source, we have performed a time-resolved (â¼3 ps) XANES experiment that reveals the evolution of an aluminum foil at the atomic level, when undergoing ultrafast laser heating and ablation. X-ray absorption spectra highlight an ultrafast transition from the crystalline solid to the disordered liquid followed by a progressive transition of the delocalized valence electronic structure (metal) down to localized atomic orbitals (nonmetal-vapor), as the average distance between atoms increases.
Assuntos
Transição de Fase , Espectroscopia por Absorção de Raios X/métodos , Alumínio/química , Temperatura , Fatores de TempoRESUMO
The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called "molecular movie" within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.