Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32848696

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that results in social-communication impairments, as well as restricted and repetitive behaviors. Moreover, ASD is more prevalent in males, with a male to female ratio of 4 to 1. Although the underlying etiology of ASD is generally unknown, recent advances in genome sequencing have facilitated the identification of a host of associated genes. Among these, synaptic proteins such as cell adhesion molecules have been strongly linked with ASD. Interestingly, many large genome sequencing studies exclude sex chromosomes, which leads to a shift in focus toward autosomal genes as targets for ASD research. However, there are many genes on the X chromosome that encode synaptic proteins, including strong candidate genes. Here, we review findings regarding two members of the neuroligin (NLGN) family of postsynaptic adhesion molecules, NLGN3 and NLGN4. Neuroligins have multiple isoforms (NLGN1-4), which are both autosomal and sex-linked. The sex-linked genes, NLGN3 and NLGN4, are both on the X chromosome and were among the first few genes to be linked with ASD and intellectual disability (ID). In addition, there is a less studied human neuroligin on the Y chromosome, NLGN4Y, which forms an X-Y pair with NLGN4X. We will discuss recent findings of these neuroligin isoforms regarding function at the synapse in both rodent models and human-derived differentiated neurons, and highlight the exciting challenges moving forward to a better understanding of ASD/ID.

2.
Neuron ; 106(5): 759-768.e7, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32243781

RESUMO

Autism spectrum disorder (ASD) is more prevalent in males; however, the etiology for this sex bias is not well understood. Many mutations on X-linked cell adhesion molecule NLGN4X result in ASD or intellectual disability. NLGN4X is part of an X-Y pair, with NLGN4Y sharing ∼97% sequence homology. Using biochemistry, electrophysiology, and imaging, we show that NLGN4Y displays severe deficits in maturation, surface expression, and synaptogenesis regulated by one amino acid difference with NLGN4X. Furthermore, we identify a cluster of ASD-associated mutations surrounding the critical amino acid in NLGN4X, and these mutations phenocopy NLGN4Y. We show that NLGN4Y cannot compensate for the functional deficits observed in ASD-associated NLGN4X mutations. Altogether, our data reveal a potential pathogenic mechanism for male bias in NLGN4X-associated ASD.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Neurônios/metabolismo , Transtorno do Espectro Autista/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual/genética , Masculino , Mutação , Transporte Proteico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA