Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Optom Vis Sci ; 101(6): 399-407, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38990238

RESUMO

SIGNIFICANCE: Poor visibility of indoor features such as steps and ramps can pose mobility hazards for people with low vision. For purposes of architectural design, it is important to understand how design parameters such as the illumination level of an indoor space affect the visibility of steps and ramps. PURPOSE: This study was aimed to examine the effect of typical variation in photopic illumination level in an indoor space on the visibility of steps and ramps for individuals with low vision. METHODS: Steps and ramps were constructed in a large windowless room illuminated by overhead lights. Subjects with low vision completed a 5-alternative forced choice task to recognize the targets at three levels of photopic illumination, i.e., 800, 80, and 8 lux, and gave confidence ratings about their judgments on a 5-point scale. Acuities and contrast sensitivities of the subjects were also measured at each illumination level. For comparison, a group of normally sighted subjects with simulated acuity reduction also completed the step-and-ramp recognition task. RESULTS: For both groups of subjects, recognition accuracy was not affected by illumination level. For subjects with low vision, however, there was a significant effect of illumination level on confidence rating: subjects became more confident about their judgments with increasing illumination. There was also a weak effect of illumination level on acuity and contrast sensitivity, both worsening with decreasing illumination. Recognition performance was best predicted by contrast sensitivity, whereas confidence was best predicted by visual acuity. CONCLUSIONS: Illumination variation over a typical photopic range in an indoor space had minimal effect on the objective visibility of steps and ramps for people with low vision. However, illumination level affected subjects' confidence in hazard recognition. Design decisions on parameters such as illumination should consider the consequences on both the objective and the subjective accessibility of a space.


Assuntos
Sensibilidades de Contraste , Iluminação , Baixa Visão , Acuidade Visual , Humanos , Baixa Visão/fisiopatologia , Masculino , Feminino , Acuidade Visual/fisiologia , Pessoa de Meia-Idade , Adulto , Sensibilidades de Contraste/fisiologia , Idoso
2.
Mol Biotechnol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551790

RESUMO

EGFR tyrosine kinase inhibitors (EGFR-TKIs) are the first-line treatment for EGFR-mutant non-small cell lung cancer (NSCLC) patients, which remarkably improve the clinical outcomes. However, drug resistance has greatly impaired the efficacy of EGFR-TKIs and contributes to cancer treatment failure. DUSP1, a negative regulator of MAPK signaling pathway, was discovered to mediate drug resistance in multiple types of cancers. Our study aimed to explore the role of DUSP1 in NSCLC cell resistance to osimertinib, a third-generation EGFR-TKI. Human NSCLC cell lines PC-9 and HCC827 were exposed to increasing concentrations of osimertinib for over 6 months to generate osimertinib resistant cells (PC-9-OR and HCC827-OR). The viabilities of osimertinib-resistant and parental sensitive NSCLC cells in response to osimertinib stimulation were detected by MTS assay and the IC50 values for osimertinib were obtained. The differentially expressed genes in osimertinib-resistant and sensitive NSCLC cells were identified by analyzing the GEO dataset GSE106765 using bioinformatic tools. DUSP1 expression was knocked down by using the short hairpin RNAs (shRNAs). Then, the effects of DUSP1 silencing on osimertinib-resistant and sensitive NSCLC cell resistance to osimertinib, viability, proliferation and apoptosis were assessed through loss-of-function experiments. The expression of key molecules (JNK, ERK, and p38 MAPK) in the MAPK signaling pathway was detected through western blotting analysis. DUSP1 was overexpressed in osimertinib-resistant NSCLC cells versus parental sensitive cells. DUSP1 silencing attenuated the resistance of NSCLC cells to osimertinib. DUSP1 silencing markedly inhibited osimertinib-resistant and sensitive NSCLC cell proliferation but enhanced cell apoptosis. Mechanically, DUSP1 knockdown increased phosphorylated-JNK, ERK, and p38 MAPK levels in NSCLC cells. Treatment with SB203580, the p38 MAPK inhibitor, reversed the effects of DUSP1 silencing on osimertinib-resistant NSCLC cell resistance to osimertinib, cell proliferation and apoptosis. DUSP1 downregulation restores the sensitivity of NSCLC cells to osimertinib via activating the MAPK signaling pathway.

3.
J Agric Food Chem ; 72(8): 4376-4383, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363824

RESUMO

Bactrocera dorsalis is a highly invasive species and is one of the most destructive agricultural pests worldwide. Organophosphorus insecticides have been widely and chronically used to control it, leading to the escalating development of resistance. Recently, odorant binding proteins (OBPs) have been found to play a role in reducing insecticide susceptibility. In this study, we used RT-qPCR to measure the expression levels of four highly expressed OBP genes in the legs of B. dorsalis at different developmental stages and observed the effect of malathion exposure on their expression patterns. The results showed that OBP28a-2 had a high expression level in 5 day old adults of B. dorsalis, and its expression increased after exposure to malathion. By CRISPR/Cas9 mutagenesis, we generated OBP28a-2-/- null mutants and found that they were more susceptible to malathion than wild-type adults. Furthermore, in vitro direct affinity assays confirmed that OBP28a-2 has a strong affinity for malathion, suggesting that it plays a role in reducing the susceptibility of B. dorsalis to malathion. Our findings enriched our understanding of the function of OBPs. The results highlighted the potential role of OBPs as buffering proteins that help insects survive exposure to insecticides.


Assuntos
Inseticidas , Tephritidae , Animais , Malation/farmacologia , Malation/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Odorantes , Tephritidae/genética , Tephritidae/metabolismo
4.
J Agric Food Chem ; 72(6): 2888-2897, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38294413

RESUMO

Olfaction plays indispensable roles in insect behavior such as host location, foraging, oviposition, and avoiding predators. Chemosensory proteins (CSPs) can discriminate the hydrophobic odorants and transfer them to the odorant receptors. Presently, CSPs have been identified in many insect species. However, their presence and functions remain unknown in Bactrocera dorsalis, a destructive and invasive insect pest in the fruit and vegetable industry. Here, we annotated eight CSP genes in the genome of B. dorsalis. The results of quantitative real-time polymerase chain reaction (RT-qPCR) showed that BdorCSP3 was highly expressed in the antennae. Molecular docking and in vitro binding assays showed that BdorCSP3 had a good binding ability to host volatiles methyl eugenol (ME, male-specific attractant) and ß-caryophyllene (potential female attractant). Subsequently, CRISPR/Cas9 was used to generate BdorCSP3-/- mutants. Electroantennograms (EAGs) and behavioral assays revealed that male mutants significantly reduced the preference for ME, while female mutants lost their oviposition preference to ß-caryophyllene. Our data indicated that BdorCSP3 played important roles in the perception of ME and ß-caryophyllene. The results not only expanded our knowledge of the olfaction perception mechanism of insect CSPs but also provided a potential molecular target for the control of B. dorsalis.


Assuntos
Percepção Olfatória , Sesquiterpenos Policíclicos , Receptores Odorantes , Tephritidae , Animais , Feminino , Simulação de Acoplamento Molecular , Tephritidae/fisiologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
5.
J Agric Food Chem ; 72(13): 6954-6963, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512330

RESUMO

The oriental fruit fly,Bactrocera dorsalis (Hendel), is a notorious pest of fruit crops, causing severe damage to fleshy fruits during oviposition and larval feeding. Gravid females locate suitable oviposition sites by detecting the host volatiles. Here, the oviposition preference of antenna-removed females and the electrophysiological response of ovipositors to benzothiazole indicated that both antennae and ovipositors are involved in perceiving benzothiazole. Subsequently, odorant receptors (ORs) expressed in both antennae and ovipositors were screened, and BdorOR43a-1 was further identified to respond to benzothiazole using voltage-clamp recording. Furthermore, BdorOR43a-1-/- mutants were obtained using the CRISPR/Cas9 system and their oviposition preference to benzothiazole was found to be significantly altered compared to WT females, suggesting that BdorOR43a-1 is one of the important ORs for benzothiazole perception. Our results not only demonstrate the important role of antennae and ovipositors in benzothiazole-induced oviposition but also elucidate on the OR responsible for benzothiazole perception in B. dorsalis.


Assuntos
Receptores Odorantes , Tephritidae , Feminino , Animais , Oviposição , Tephritidae/fisiologia , Receptores Odorantes/genética , Benzotiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA