Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(29): 9786-9801, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32434926

RESUMO

Fatty acids play many important roles in cells and also in industrial processes. Furan fatty acids (FuFAs) are present in the lipids of some plant, fish, and microbial species and appear to function as second messengers in pathways that protect cells from membrane-damaging agents. We report here the results of chemical, genetic, and synthetic biology experiments to decipher the biosynthesis of the monomethylated FuFA, methyl 9-(3-methyl-5-pentylfuran-2-yl) nonanoate (9M5-FuFA), and its dimethyl counterpart, methyl 9-(3,4-dimethyl-5-pentylfuran-2-yl) nonanoate (9D5-FuFA), in two α-proteobacteria. Each of the steps in FuFA biosynthesis occurs on pre-existing phospholipid fatty acid chains, and we identified pathway intermediates and the gene products that catalyze 9M5-FuFA and 9D5-FuFA synthesis in Rhodobacter sphaeroides 2.4.1 and Rhodopseudomonas palustris CGA009. One previously unknown pathway intermediate was a methylated diunsaturated fatty acid, (10E,12E)-11-methyloctadeca-10,12-dienoic acid (11Me-10t,12t-18:2), produced from (11E)-methyloctadeca-11-enoic acid (11Me-12t-18:1) by a newly identified fatty acid desaturase, UfaD. We also show that molecular oxygen (O2) is the source of the oxygen atom in the furan ring of 9M5-FuFA, and our findings predict that an O2-derived oxygen atom is incorporated into 9M5-FuFA via a protein, UfaO, that uses the 11Me-10t,12t-18:2 fatty acid phospholipid chain as a substrate. We discovered that R. palustris also contains a SAM-dependent methylase, FufM, that produces 9D5-FuFA from 9M5-FuFA. These results uncover the biochemical sequence of intermediates in a bacterial pathway for 9M5-FuFA and 9D5-FuFA biosynthesis and suggest the existence of homologs of the enzymes identified here that could function in FuFA biosynthesis in other organisms.


Assuntos
Vias Biossintéticas , Ácidos Graxos/biossíntese , Furanos/metabolismo , Rhodobacter sphaeroides/metabolismo , Rodopseudomonas/metabolismo , Ácidos Graxos/genética , Rhodobacter sphaeroides/genética , Rodopseudomonas/genética
2.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31732577

RESUMO

While lignin represents a major fraction of the carbon in plant biomass, biological strategies to convert the components of this heterogeneous polymer into products of industrial and biotechnological value are lacking. Syringic acid (3,5-dimethoxy-4-hydroxybenzoic acid) is a by-product of lignin degradation, appearing in lignocellulosic hydrolysates, deconstructed lignin streams, and other agricultural products. Rhodopseudomonas palustris CGA009 is a known degrader of phenolic compounds under photoheterotrophic conditions via the benzoyl coenzyme A (CoA) degradation (BAD) pathway. However, R. palustris CGA009 is reported to be unable to metabolize meta-methoxylated phenolics, such as syringic acid. We isolated a strain of R. palustris (strain SA008.1.07), adapted from CGA009, which can grow on syringic acid under photoheterotrophic conditions, utilizing it as a sole source of organic carbon and reducing power. An SA008.1.07 mutant with an inactive benzoyl-CoA reductase structural gene was able to grow on syringic acid, demonstrating that the metabolism of this aromatic compound is not through the BAD pathway. Comparative gene expression analyses of SA008.1.07 implicated the involvement of products of the vanARB operon (rpa3619, rpa3620, rpa3621), which has been described as catalyzing aerobic aromatic ring demethylation in other bacteria, in anaerobic syringic acid degradation. In addition, experiments with a vanARB deletion mutant demonstrated the involvement of the vanARB operon in anaerobic syringic acid degradation. These observations provide new insights into the anaerobic degradation of meta-methoxylated and other aromatics by R. palustrisIMPORTANCE Lignin is the most abundant aromatic polymer on Earth and a resource that could eventually substitute for fossil fuels as a source of aromatic compounds for industrial and biotechnological applications. Engineering microorganisms for the production of aromatic-based biochemicals requires detailed knowledge of the metabolic pathways for the degradation of aromatics that are present in lignin. Our isolation and analysis of a Rhodopseudomonas palustris strain capable of syringic acid degradation reveal a previously unknown metabolic route for aromatic degradation in R. palustris This study highlights several key features of this pathway and sets the stage for a more complete understanding of the microbial metabolic repertoire required to metabolize aromatic compounds from lignin and other renewable sources.


Assuntos
Ácido Gálico/análogos & derivados , Rodopseudomonas/metabolismo , Anaerobiose , Biodegradação Ambiental , Ácido Gálico/metabolismo , Lignina/química
4.
Proc Natl Acad Sci U S A ; 111(33): E3450-7, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25092314

RESUMO

Fatty acids play important functional and protective roles in living systems. This paper reports on the synthesis of a previously unidentified 19 carbon furan-containing fatty acid, 10,13-epoxy-11-methyl-octadecadienoate (9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid) (19Fu-FA), in phospholipids from Rhodobacter sphaeroides. We show that 19Fu-FA accumulation is increased in cells containing mutations that increase the transcriptional response of this bacterium to singlet oxygen ((1)O2), a reactive oxygen species generated by energy transfer from one or more light-excited donors to molecular oxygen. We identify a previously undescribed class of S-adenosylmethionine-dependent methylases that convert a phospholipid 18 carbon cis unsaturated fatty acyl chain to a 19 carbon methylated trans unsaturated fatty acyl chain (19M-UFA). We also identify genes required for the O2-dependent conversion of this 19M-UFA to 19Fu-FA. Finally, we show that the presence of (1)O2 leads to turnover of 19Fu-Fa in vivo. We propose that furan-containing fatty acids like 19Fu-FA can act as a membrane-bound scavenger of (1)O2, which is naturally produced by integral membrane enzymes of the R. sphaeroides photosynthetic apparatus.


Assuntos
Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Furanos/metabolismo , Cromatografia Gasosa , Espécies Reativas de Oxigênio/metabolismo , Rhodobacter sphaeroides/metabolismo , Oxigênio Singlete/metabolismo
5.
Anal Chem ; 86(20): 10036-43, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25208235

RESUMO

Identification of unknown compounds is of critical importance in GC/MS applications (metabolomics, environmental toxin identification, sports doping, petroleomics, and biofuel analysis, among many others) and remains a technological challenge. Derivation of elemental composition is the first step to determining the identity of an unknown compound by MS, for which high accuracy mass and isotopomer distribution measurements are critical. Here, we report on the development of a dedicated, applications-grade GC/MS employing an Orbitrap mass analyzer, the GC/Quadrupole-Orbitrap. Built from the basis of the benchtop Orbitrap LC/MS, the GC/Quadrupole-Orbitrap maintains the performance characteristics of the Orbitrap, enables quadrupole-based isolation for sensitive analyte detection, and includes numerous analysis modalities to facilitate structural elucidation. We detail the design and construction of the instrument, discuss its key figures-of-merit, and demonstrate its performance for the characterization of unknown compounds and environmental toxins.


Assuntos
Espectrometria de Massas/instrumentação , Desenho de Equipamento
6.
Biomolecules ; 14(8)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39199393

RESUMO

Bacterial cytoplasmic organelles are diverse and serve many varied purposes. Here, we employed Rhodobacter sphaeroides to investigate the accumulation of carbon and inorganic phosphate in the storage organelles, polyhydroxybutyrate (PHB) and polyphosphate (PP), respectively. Using cryo-electron tomography (cryo-ET), these organelles were observed to increase in size and abundance when growth was arrested by chloramphenicol treatment. The accumulation of PHB and PP was quantified from three-dimensional (3D) segmentations in cryo-tomograms and the analysis of these 3D models. The quantification of PHB using both segmentation analysis and liquid chromatography and mass spectrometry (LCMS) each demonstrated an over 10- to 20-fold accumulation of PHB. The cytoplasmic location of PHB in cells was assessed with fluorescence light microscopy using a PhaP-mNeonGreen fusion-protein construct. The subcellular location and enumeration of these organelles were correlated by comparing the cryo-ET and fluorescence microscopy data. A potential link between PHB and PP localization and possible explanations for co-localization are discussed. Finally, the study of PHB and PP granules, and their accumulation, is discussed in the context of advancing fundamental knowledge about bacterial stress response, the study of renewable sources of bioplastics, and highly energetic compounds.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Polifosfatos , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/ultraestrutura , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Polifosfatos/metabolismo , Polifosfatos/química , Organelas/metabolismo , Organelas/ultraestrutura , Hidroxibutiratos/metabolismo , Hidroxibutiratos/química , Microscopia de Fluorescência/métodos , Poliésteres/metabolismo , Poliésteres/química , Poli-Hidroxibutiratos
7.
mBio ; 8(3)2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28536286

RESUMO

Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation in Rhodobacter sphaeroides By screening an R. sphaeroides Tn5 mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals.IMPORTANCE This paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these alterations can be enhanced by growing cells in bioreactor configurations that can be used industrially. We propose that our findings can inform current and future efforts to increase production of microbial lipids, other fuels, or chemicals that are currently derived from petroleum.


Assuntos
Metabolismo dos Lipídeos , Mutação , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Parede Celular/metabolismo , Elementos de DNA Transponíveis , Testes Genéticos , Mutagênese Insercional
8.
mBio ; 4(1): e00541-12, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23300250

RESUMO

UNLABELLED: Singlet oxygen ((1)O(2)) is a reactive oxygen species generated by energy transfer from one or more excited donors to molecular oxygen. Many biomolecules are prone to oxidation by (1)O(2), and cells have evolved systems to protect themselves from damage caused by this compound. One way that the photosynthetic bacterium Rhodobacter sphaeroides protects itself from (1)O(2) is by inducing a transcriptional response controlled by ChrR, an anti-σ factor which releases an alternative sigma factor, σ(E), in the presence of (1)O(2). Here we report that induction of σ(E)-dependent gene transcription is decreased in the presence of (1)O(2) when two conserved genes in the σ(E) regulon are deleted, including one encoding a cyclopropane fatty acid synthase homologue (RSP2144) or one encoding a protein of unknown function (RSP1091). Thus, we conclude that RSP2144 and RSP1091 are each necessary to increase σ(E) activity in the presence of (1)O(2). In addition, we found that unlike in wild-type cells, where ChrR is rapidly degraded when (1)O(2) is generated, turnover of this anti-σ factor is slowed when cells lacking RSP2144, RSP1091, or both of these proteins are exposed to (1)O(2). Further, we demonstrate that the organic hydroperoxide tert-butyl hydroperoxide promotes ChrR turnover in both wild-type cells and mutants lacking RSP2144 or RSP1091, suggesting differences in the ways different types of oxidants increase σ(E) activity. IMPORTANCE: Oxygen serves many crucial functions on Earth; it is produced during photosynthesis and needed for other pathways. While oxygen is relatively inert, it can be converted to reactive oxygen species (ROS) that destroy biomolecules, cause disease, or kill cells. When energy is transferred to oxygen, the ROS singlet oxygen is generated. To understand how singlet oxygen impacts cells, we study the stress response to this ROS in Rhodobacter sphaeroides, a bacterium that, like plants, generates this compound as a consequence of photosynthesis. This paper identifies proteins that activate a stress response to singlet oxygen and shows that they act in a specific response to this ROS. The identified proteins are found in many free-living, symbiotic, or pathogenic bacteria that can encounter singlet oxygen in nature. Thus, our findings provide new information about a stress response to a ROS of broad biological, agricultural, and biomedical importance.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Rhodobacter sphaeroides/efeitos dos fármacos , Rhodobacter sphaeroides/genética , Oxigênio Singlete/metabolismo , Transcrição Gênica , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Deleção de Genes , Fator sigma/biossíntese , Oxigênio Singlete/toxicidade , Fatores de Transcrição/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA