Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Clin Nephrol ; 98(1): 42-48, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35603689

RESUMO

BACKGROUND: Most patients with chronic kidney disease (CKD) are old, comorbid, and subjected to polypharmacy. This study describes prevalence and predictors of potentially inappropriate medication (PIM) in CKD patients. MATERIALS AND METHODS: Medication plans of CKD patients of the "Greifswald Approach to Individualized Medicine" cross-sectional study (GANI_MED) were checked for PIM based on kidney function (PIM-K) and PIM for elderly patients (PIM-E). PIM-K were defined by prescription instructions of product labeling. PIM-E were defined by BEERS, -PRISCUS, and FORTA criteria. Predictors for PIM were identified through multiple stepwise regression. RESULTS: 375 patients were included (age: 67.9 ± 13.5 years; estimated glomerular filtration rate (eGFR): 23.3 ± 18.6 mL/min/1.73m2; prescriptions: 11.1 ± 4.7). 44.5% of all CKD patients had PIM-K, and 43.2 to 79.0% of all elderly patients had PIM-E. Polypharmacy and reduced eGFR were predictors for PIM. The risk for PIM-K was increased by 3.8 (95% confidence interval (CI): 1.5 - 9.6) with 10 or more prescriptions and by 8.7 (95% CI: 1.3 - 58.5) with an eGFR below 30 mL/min/1.73m2. On average, elderly patients with 10 or more prescriptions had 3.0 ± 1.7 PIM-E. CONCLUSION: Polypharmacy, PIM-K, and PIM-E affect many CKD patients and can lead to adverse events. Deprescribing and targeted prescribing may improve the outcome of CKD patients and elderly patients.


Assuntos
Lista de Medicamentos Potencialmente Inapropriados , Insuficiência Renal Crônica , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Humanos , Prescrição Inadequada , Pessoa de Meia-Idade , Insuficiência Renal Crônica/etiologia , Fatores de Risco
2.
Eur Biophys J ; 50(5): 731-743, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33730176

RESUMO

The effects of the chemical environment of menaquinones (all-trans MK-4 and all-trans MK-7) incorporated in lipid monolayers on mercury electrodes have been studied with respect to the thermodynamics and kinetics of their electrochemistry. The chemical environment relates to the composition of lipid films as well as the adjacent aqueous phase. It could be shown that the addition of all-trans MK-4 to TMCL does not change the phase transition temperatures of TMCL. In case of DMPC monolayers, the presence of cholesterol has no effect on the thermodynamics (formal redox potentials) of all-trans MK-7, but the kinetics are affected. Addition of an inert electrolyte (sodium perchlorate; change of ionic strength) to the aqueous phase shifts the redox potentials of all-trans MK-7 only slightly. The formal redox potentials of all-trans MK-4 were determined in TMCL and nCL monolayers and found to be higher in nCL monolayers than in TMCL monolayers. The apparent electron transfer rate constants, transfer coefficients and activation energies of all-trans MK-4 in cardiolipins have been also determined. Most surprisingly, the apparent electron transfer rate constants of all-trans MK-4 exhibit an opposite pH dependence for TMCL and nCL films: the rate constants increase in TMCL films with increasing pH, but in nCL films they increase with decreasing pH. This study is a contribution to understand environmental effects on the redox properties of membrane bond redox systems.


Assuntos
Termodinâmica , Cardiolipinas , Técnicas Eletroquímicas , Eletrodos , Cinética , Mercúrio , Oxirredução , Vitamina K 2
3.
Eur Biophys J ; 49(3-4): 279-288, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32372117

RESUMO

The acid-base and redox properties of the menaquinones MK-4, MK-7, and MK-9 (vitamin K2) have been studied in DMPC monolayers on mercury electrodes. The monolayers were prepared by adhesion-spreading of menaquinone-spiked DMPC liposomes on a stationary mercury drop electrode. All three menaquinones possess [Formula: see text] constants outside the experimentally accessible range, i.e., they are higher than about 12. The standard potentials of MK-4, MK-7, and MK-9 in the DMPC monolayers are very similar, i.e., 0.351, 0.326, and 0.330 V (corresponding to the biochemical standard potentials - 0.063, - 0.088, and - 0.085 V).


Assuntos
Dimiristoilfosfatidilcolina/química , Mercúrio/química , Vitamina K 2/química , Eletrodos , Concentração de Íons de Hidrogênio , Oxirredução , Vitamina K 2/análogos & derivados
4.
J Cell Mol Med ; 22(11): 5265-5277, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30133147

RESUMO

Podocyte loss and changes to the complex morphology are major causes of chronic kidney disease (CKD). As the incidence is continuously increasing over the last decades without sufficient treatment, it is important to find predicting biomarkers. Therefore, we measured urinary mRNA levels of podocyte genes NPHS1, NPHS2, PODXL and BDNF, KIM-1, CTSL by qRT-PCR of 120 CKD patients. We showed a strong correlation between BDNF and the kidney injury marker KIM-1, which were also correlated with NPHS1, suggesting podocytes as a contributing source. In human biopsies, BDNF was localized in the cell body and major processes of podocytes. In glomeruli of diabetic nephropathy patients, we found a strong BDNF signal in the remaining podocytes. An inhibition of the BDNF receptor TrkB resulted in enhanced podocyte dedifferentiation. The knockdown of the orthologue resulted in pericardial oedema formation and lowered viability of zebrafish larvae. We found an enlarged Bowman's space, dilated glomerular capillaries, podocyte loss and an impaired glomerular filtration. We demonstrated that BDNF is essential for glomerular development, morphology and function and the expression of BDNF and KIM-1 is highly correlated in urine cells of CKD patients. Therefore, BDNF mRNA in urine cells could serve as a potential CKD biomarker.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Nefropatias Diabéticas/genética , Receptor Celular 1 do Vírus da Hepatite A/genética , Glicoproteínas de Membrana/genética , Receptor trkB/genética , Insuficiência Renal Crônica/genética , Idoso , Animais , Fator Neurotrófico Derivado do Encéfalo/urina , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/genética , Humanos , Rim/metabolismo , Rim/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Glicoproteínas de Membrana/urina , Pessoa de Meia-Idade , Podócitos/metabolismo , Podócitos/patologia , Proteinúria/genética , Proteinúria/patologia , RNA Mensageiro/genética , Receptor trkB/urina , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/urina , Peixe-Zebra/genética
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(4): 379-387, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29325722

RESUMO

The mitochondrial phospholipid cardiolipin (CL) has been implicated with mitochondrial morphology, function, and cell proliferation. Changes in CL are often paralleled by changes in the lipid environment of mitochondria that may contribute to mitochondrial function and proliferation. This study aimed to separate the effects of CL content and CL composition from cellular free fatty acid distribution on bioenergetics and proliferation in C6 glioma cells. To this end, cardiolipin synthase and the CL remodelling enzyme, tafazzin, were knocked-down by siRNA in C6 cells. After 72 h of cultivation, we analysed CL composition by means of LC/MS/MS, distribution of cellular fatty acids by means of gas chromatography, and determined oxygen consumption and proliferation. Knock-down of cardiolipin synthase affected the cellular CL content in the presence of linoleic acid (LA) in the culture medium. Knock-down of tafazzin had no consequence with respect to the pattern of cellular fatty acids but caused a decrease in cell proliferation. It significantly changed the distribution of molecular CL species, increased CL content, decreased oxygen consumption, and decreased cell proliferation when cultured in the presence of linoleic acid (LA). The addition of linoleic acid to the culture medium caused significant changes in the pattern of cellular fatty acids and the composition of molecular CL species. These data suggest that tafazzin is required for efficient bioenergetics and for proliferation of glioma cells. Supplementation of fatty acids can be a powerful tool to direct specific changes in these parameters.


Assuntos
Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Glioma/enzimologia , Glioma/patologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Aciltransferases , Animais , Cardiolipinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Citrato (si)-Sintase/metabolismo , Técnicas de Silenciamento de Genes , Ácido Linoleico/metabolismo , Proteínas de Membrana/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Transferases (Outros Grupos de Fosfato Substituídos)/genética
6.
Eur Heart J ; 38(1): 53-61, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26612579

RESUMO

AIMS: Accumulation of atrial adipose tissue is associated with atrial fibrillation (AF). However, the underlying mechanisms remain poorly understood. We examined the relationship between the characteristics of fatty infiltrates of the atrial myocardium and the history of AF. METHODS AND RESULTS: Atrial samples, collected in 92 patients during cardiac surgery and in a sheep model of persistent AF, were subjected to a detailed histological analysis. In sections of human right atrial samples, subepicardial fatty infiltrations were commonly observed in the majority of patients. A clear difference in the appearance and fibrotic content of these fatty infiltrations was observed. Fibro-fatty infiltrates predominated in patients with permanent AF (no AF: 37 ± 24% vs. paroxysmal AF: 50 ± 21% vs. permanent AF: 64 ± 23%, P < 0.001). An inverse correlation between fibrotic remodelling and the amount of subepicardial adipose tissue suggested the progressive fibrosis of fatty infiltrates with permanent AF. This hypothesis was tested in a sheep model of AF. In AF sheep, an increased accumulation of peri-atrial fat depot was observed on cardiac magnetic resonance imaging and dense fibro-fatty infiltrations predominated in the left atria of AF sheep. Cellular inflammation, mainly consisting of functional cytotoxic T lymphocytes, was observed together with adipocyte cell death in human atria. CONCLUSION: Atrial fibrillation is associated with the fibrosis of subepicardial fatty infiltrates, a process in which cytotoxic lymphocytes might be involved. This remodelling of the atrial subepicardium could contribute to structural remodelling forming a substrate for AF.


Assuntos
Tecido Adiposo/patologia , Fibrilação Atrial/patologia , Remodelamento Atrial/fisiologia , Miocárdio/patologia , Idoso , Análise de Variância , Animais , Doença Crônica , Modelos Animais de Doenças , Feminino , Fibrose/fisiopatologia , Átrios do Coração , Humanos , Angiografia por Ressonância Magnética , Masculino , Estudos Retrospectivos , Ovinos
7.
Biochim Biophys Acta ; 1861(8 Pt A): 748-54, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27163692

RESUMO

Challenge of the immune system with antigens induces a cascade of processes including activation of naïve T cells, induction of proliferation, differentiation into effector cells and finally contraction via apoptosis. To meet the dynamic requirements of an adequate immune response, T cells must metabolically adapt to actual situations by switching between catabolic and anabolic metabolism. In this context mitochondria are hubs of metabolic regulation. The phospholipid cardiolipin (CL) is crucial for the structural and functional integrity and, thus, the metabolism of mitochondria. The aim of this study was to verify a possible interrelationship between T cell proliferation and CL composition. For this purpose, we adjusted the proliferation of peripheral human T cells from volunteers by stimulation with different concentrations of the mitogen phytohaemagglutinin (PHA), inhibition with Cyclosporin A (CsA) and exposure of cells to different free fatty acids and subsequently analysed the composition of CL by LC/MS/MS spectroscopy. All of the treatments had significant effects on CL composition. Correlation analysis of the proliferation rate and CL composition revealed that only the amount of incorporated palmitoleic acid and the content of tetralinoleoyl-CL are significantly associated with the proliferation rate. This observation is strongly suggestive of a regulatory function of these particular CL components/species in the process of T cell proliferation. As CL is crucially involved in mitochondrial function one can speculate that changes in CL composition contribute to vital mitochondria-dependent adaptations of energy metabolism in T cells during immune response.


Assuntos
Cardiolipinas/metabolismo , Proliferação de Células/fisiologia , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Linfócitos T/metabolismo , Proliferação de Células/efeitos dos fármacos , Ciclosporina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/farmacologia , Humanos , Linfócitos T/citologia
8.
Kidney Blood Press Res ; 42(1): 145-155, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28395289

RESUMO

BACKGROUND/AIMS: Several studies sought to identify new biomarkers for chronic kidney disease (CKD). As the renal renin-angiotensin system is activated in CKD, urinary angiotensinogen or renin excretion may be suitable candidates. We tested whether urinary angiotensinogen or renin excretion is elevated in CKD and whether these parameters are associated with estimated glomerular filtration rate (eGFR). We further tested whether urinary angiotensinogen or renin excretion may convey additional information beyond that provided by albuminuria. METHODS: We measured urinary and plasma angiotensinogen, renin, albumin and creatinine in 177 CKD patients from the Greifswald Approach to Individualized Medicine project and in 283 healthy controls from the Study of Health in Pomerania. The urinary excretion of specific proteins is given as protein-to-creatinine ratio. Receiver operating characteristic (ROC) curves, spearman correlation coefficients and linear regression models were calculated. RESULTS: Urinary angiotensinogen [2,511 (196-31,909) vs. 18.6 (8.3-44.0) pmol/g, *P<0.01] and renin excretion [0.311 (0.135-1.155) vs. 0.069 (0.045-0.148) pmol/g, *P<0.01] were significantly higher in CKD patients than in healthy controls. The area under the ROC curve was significantly larger when urinary angiotensinogen, renin and albumin excretion were combined than with urinary albumin excretion alone. Urinary angiotensinogen (ß-coefficient -2.405, standard error 0.117, P<0.01) and renin excretion (ß-coefficient -0.793, standard error 0.061, P<0.01) were inversely associated with eGFR. Adjustment for albuminuria, age, sex, systolic blood pressure and body mass index did not significantly affect the results. CONCLUSION: Urinary angiotensinogen and renin excretion are elevated in CKD patients. Both parameters are negatively associated with eGFR and these associations are independent of urinary albumin excretion. In CKD patients urinary angiotensinogen and renin excretion may convey additional information beyond that provided by albuminuria.


Assuntos
Angiotensinogênio/urina , Insuficiência Renal Crônica/urina , Renina/urina , Idoso , Albuminúria , Biomarcadores/urina , Estudos de Casos e Controles , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC
9.
Eur Arch Psychiatry Clin Neurosci ; 267(5): 427-443, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28035472

RESUMO

The vasopressin- and oxytocin-degrading enzyme insulin-regulated aminopeptidase (IRAP) is expressed in various organs including the brain. However, knowledge about its presence in human hypothalamus is fragmentary. Functionally, for a number of reasons (genetic linkage, hydrolysis of oxytocin and vasopressin, its role as angiotensin IV receptor in learning and memory and others) IRAP might play a role in schizophrenia. We studied the regional and cellular localization of IRAP in normal human brain with special emphasis on the hypothalamus and determined numerical densities of IRAP-expressing cells in the paraventricular, supraoptic and suprachiasmatic nuclei in schizophrenia patients and controls. By using immunohistochemistry and Western blot analysis, IRAP was immunolocalized in postmortem human brains. Cell countings were performed to estimate numbers and numerical densities of IRAP immunoreactive hypothalamic neurons in schizophrenia patients and control cases. Shape, size and regional distribution of IRAP-expressing cells, as well the lack of co-localization with the glia marker glutamine synthetase, show that IRAP is expressed in neurons. IRAP immunoreactive cells were observed in the hippocampal formation, cerebral cortex, thalamus, amygdala and, abundantly, hypothalamus. Double labeling experiments (IRAP and oxytocin/neurophysin 1, IRAP with vasopressin/neurophysin 2) revealed that IRAP is present in oxytocinergic and in vasopressinergic neurons. In schizophrenia patients, the numerical density of IRAP-expressing neurons in the paraventricular and the suprachiasmatic nuclei is significantly reduced, which might be associated with the reduction in neurophysin-containing neurons in these nuclei in schizophrenia. The pathophysiological role of lowered hypothalamic IRAP expression in schizophrenia remains to be established.


Assuntos
Cistinil Aminopeptidase/metabolismo , Hipotálamo/enzimologia , Hipotálamo/patologia , Neurônios/enzimologia , Neuro-Hipófise/metabolismo , Esquizofrenia/patologia , Idoso , Autopsia , Doença Crônica , Feminino , Glutamato-Amônia Ligase/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Neurofisinas/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Núcleo Supraquiasmático/patologia , Vasopressinas/metabolismo
10.
Biochim Biophys Acta ; 1850(8): 1555-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25513966

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the most common arrhythmia in clinical practice and is a potential cause of thromboembolic events. AF induces significant changes in the electrophysiological properties of atrial myocytes and causes alterations in the structure, metabolism, and function of the atrial tissue. The molecular basis for the development of structural atrial remodeling of fibrillating human atria is still not fully understood. However, increased production of reactive oxygen or nitrogen species (ROS/RNS) and the activation of specific redox-sensitive signaling pathways observed both in patients with and animal models of AF are supposed to contribute to development, progression and self-perpetuation of AF. SCOPE OF REVIEW: The present review summarizes the sources and targets of ROS/RNS in the setting of AF and focuses on key redox-sensitive signaling pathways that are implicated in the pathogenesis of AF and function either to aggravate or protect from disease. MAJOR CONCLUSIONS: NADPH oxidases and various mitochondrial monooxygenases are major sources of ROS during AF. Besides direct oxidative modification of e.g. ion channels and ion handling proteins that are crucially involved in action potential generation and duration, AF leads to the reversible activation of redox-sensitive signaling pathways mediated by activation of redox-regulated proteins including Nrf2, NF-κB, and CaMKII. Both processes are recognized to contribute to the formation of a substrate for AF and, thus, to increase AF inducibility and duration. GENERAL SIGNIFICANCE: AF is a prevalent disease and due to the current demographic developments its socio-economic relevance will further increase. Improving our understanding of the role that ROS and redox-related (patho)-mechanisms play in the development and progression of AF may allow the development of a targeted therapy for AF that surpasses the efficacy of previous general anti-oxidative strategies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.


Assuntos
Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Coração/fisiopatologia , Miocárdio/metabolismo , Animais , Humanos , Miocárdio/patologia , Oxirredução , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
11.
Prostate ; 76(4): 409-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26643154

RESUMO

BACKGROUND: Remodeling of the tumor environment and the modulation of tumor associated non-malignant cells are essential events in tumor progression. Exosomes are small membranous vesicles of 50-150 nm in diameter, which are secreted into the extracellular space and supposedly serve as vehicles for signal and effector molecules to modulate adjacent target cells. We characterized the mRNA and protein composition as well as cellular functions of prostate cancer cell-derived exosomes. METHODS: Exosomes were prepared from prostate cancer cell culture supernatant by ultracentrifugation and subsequently characterized by dynamic light scattering and electron microscopy. Exosomal mRNA and protein composition were analyzed by DNA microarrays and gel electrophoresis coupled with mass spectrometry. Physiological effects of exosomes were studied by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase release cell assays. Using a SILAC approach, putative uptake of exosomal human proteins in canine cells and canine de novo synthesis of proteins specified by exosome-transferred human mRNA was analyzed in MDCK cells via mass spectrometry. RESULTS: Preparations of exosomes revealed typical cup shaped particles of 150 nm in diameter. Analysis of mRNA and protein composition of exosomes exhibited a wide range of mRNA and protein species. Interestingly, the packaging of at least small proteins into exosomes was apparently unspecific, as shown with the example of two model proteins. In cell culture incubation experiments exosomal preparations of prostate cancer cells caused anti-proliferative effects. MS analysis revealed the uptake of exosomal human proteins into canine cells after 6 hr of incubation. CONCLUSIONS: The results reveal a distinct exosomal functionality in the modulation of the prostatic tumor adjacent environment. The multitude of translocated factors implies the induction of numerous effects in tumor-associated target cells, including impact on cellular growth.


Assuntos
Exossomos/fisiologia , Neoplasias da Próstata/ultraestrutura , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Animais , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Cães , Difusão Dinâmica da Luz , Exossomos/ultraestrutura , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Masculino , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Transporte Proteico/fisiologia , Proteínas/análise , Transporte de RNA/fisiologia , RNA Mensageiro/análise , Microambiente Tumoral
12.
Europace ; 17(10): 1457-66, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26364316

RESUMO

Atrial fibrillation (AF) is the most common sustained arrhythmia in the general population. As an age-related arrhythmia AF is becoming a huge socio-economic burden for European healthcare systems. Despite significant progress in our understanding of the pathophysiology of AF, therapeutic strategies for AF have not changed substantially and the major challenges in the management of AF are still unmet. This lack of progress may be related to the multifactorial pathogenesis of atrial remodelling and AF that hampers the identification of causative pathophysiological alterations in individual patients. Also, again new mechanisms have been identified and the relative contribution of these mechanisms still has to be established. In November 2010, the European Union launched the large collaborative project EUTRAF (European Network of Translational Research in Atrial Fibrillation) to address these challenges. The main aims of EUTRAF are to study the main mechanisms of initiation and perpetuation of AF, to identify the molecular alterations underlying atrial remodelling, to develop markers allowing to monitor this processes, and suggest strategies to treat AF based on insights in newly defined disease mechanisms. This article reports on the objectives, the structure, and initial results of this network.


Assuntos
Fibrilação Atrial/diagnóstico , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial , Pesquisa Translacional Biomédica/tendências , Comportamento Cooperativo , Eletrocardiografia , Europa (Continente) , Humanos
14.
J Transl Med ; 12: 144, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24886498

RESUMO

BACKGROUND: Individualized Medicine aims at providing optimal treatment for an individual patient at a given time based on his specific genetic and molecular characteristics. This requires excellent clinical stratification of patients as well as the availability of genomic data and biomarkers as prerequisites for the development of novel diagnostic tools and therapeutic strategies. The University Medicine Greifswald, Germany, has launched the "Greifswald Approach to Individualized Medicine" (GANI_MED) project to address major challenges of Individualized Medicine. Herein, we describe the implementation of the scientific and clinical infrastructure that allows future translation of findings relevant to Individualized Medicine into clinical practice. METHODS/DESIGN: Clinical patient cohorts (N > 5,000) with an emphasis on metabolic and cardiovascular diseases are being established following a standardized protocol for the assessment of medical history, laboratory biomarkers, and the collection of various biosamples for bio-banking purposes. A multi-omics based biomarker assessment including genome-wide genotyping, transcriptome, metabolome, and proteome analyses complements the multi-level approach of GANI_MED. Comparisons with the general background population as characterized by our Study of Health in Pomerania (SHIP) are performed. A central data management structure has been implemented to capture and integrate all relevant clinical data for research purposes. Ethical research projects on informed consent procedures, reporting of incidental findings, and economic evaluations were launched in parallel.


Assuntos
Medicina de Precisão , Biomarcadores/metabolismo , Doenças Cardiovasculares/terapia , Estudos de Coortes , Humanos , Doenças Metabólicas/terapia
15.
J Cell Mol Med ; 17(8): 976-88, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23800081

RESUMO

Cancer cells showing low apoptotic effects following oxidative stress-induced DNA damage are mainly affected by growth arrest. Thus, recent studies focus on improving anti-cancer therapies by increasing apoptosis sensitivity. We aimed at identifying a universal molecule as potential target to enhance oxidative stress-based anti-cancer therapy through a switch from cell cycle arrest to apoptosis. A cDNA microarray was performed with hydrogen peroxide-treated oesophageal squamous epithelial cancer cells TE7. This cell line showed checkpoint activation via p21(WAF1) , but low apoptotic response following DNA damage. The potential target molecule was chosen depended on the following demands: it should regulate DNA damage response, cell cycle and apoptosis. As the transcription factor ATF2 is implicated in all these processes, we focused on this protein. We investigated checkpoint activation via ATF2. Indeed, ATF2 knockdown revealed ATF2-triggered p21(WAF1) protein expression, suggesting p21(WAF1) transactivation through ATF2. Using chromatin immunoprecipitation (ChIP), we identified a hitherto unknown ATF2-binding sequence in the p21(WAF1) promoter. p-ATF2 was found to interact with p-c-Jun, creating the AP-1 complex. Moreover, ATF2 knockdown led to c-Jun downregulation. This suggests ATF2-driven induction of c-Jun expression, thereby enhancing ATF2 transcriptional activity via c-Jun-ATF2 heterodimerization. Notably, downregulation of ATF2 caused a switch from cell cycle arrest to reinforced apoptosis, presumably via p21(WAF1) downregulation, confirming the importance of ATF2 in the establishment of cell cycle arrest. 1-Chloro-2,4-dinitrobenzene also led to ATF2-dependent G2/M arrest, suggesting that this is a general feature induced by oxidative stress. As ATF2 knockdown also increased apoptosis, we propose ATF2 as a target for combined oxidative stress-based anti-cancer therapies.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Apoptose , Técnicas de Silenciamento de Genes , Estresse Oxidativo , Apoptose/efeitos dos fármacos , Apoptose/genética , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/metabolismo
16.
Amino Acids ; 45(6): 1373-83, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24100545

RESUMO

Human cyclic AMP response modulator proteins (CREMs) are encoded by the CREM gene, which generates 30 or more different CREM protein isoforms. They are members of the leucine zipper protein superfamily of nuclear transcription factors. CREM proteins are known to be implicated in a plethora of important cellular processes within the CNS. Amazingly, little is known about their cellular and regional distribution in the brain, however. Therefore, we studied by means of immunohistochemistry and Western blotting the expression patterns of CREM in developing and adult human brain, as well as in brains of Alzheimer's disease patients. CREM immunoreactivity was found to be widely but unevenly distributed in the adult human brain. Its localization was confined to neurons. In immature human brains, CREM multiple neuroblasts and radial glia cells expressed CREM. In Alzheimer's brain, we found an increased cellular expression of CREM in dentate gyrus neurons as compared to controls. We discuss our results with regard to the putative roles of CREM in brain development and in cognition.


Assuntos
Envelhecimento , Doença de Alzheimer/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Giro Denteado/citologia , Giro Denteado/patologia , Neurônios/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Modulador de Elemento de Resposta do AMP Cíclico/biossíntese , Modulador de Elemento de Resposta do AMP Cíclico/imunologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neurônios/citologia , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
18.
Biomedicines ; 11(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36979703

RESUMO

APN/CD13 is expressed in a variety of cells/tissues and is therefore associated with diverse physiological functions, including proliferation, differentiation, migration, angiogenesis, invasion, metastasis, vasoconstriction, and the regulation of normal and impaired immune function. Increased expression or activity of APN/CD13 has been described for various tumors, such that APN/CD13 is in most cases associated with reduced disease-free and overall survival. The mechanisms that mediate these cellular effects of APN/CD13 have been largely determined and are described here. APN/CD13-regulated signaling pathways include integrin recycling, the regulation of small GTPase activities, cell-ECM interactions, and Erk1/2, PI3K, and Wnt signaling. APN/CD13 is a neo-angiogenesis marker that is not found on normal endothelia, but it is found on neo-angiogenetically active endothelia. Therefore, APN/CD13 represents a specific receptor for so-called "tumor-homing peptides" (NRG peptides). Peptides containing the NRG motif show high-affinity binding to APN/CD13. APN/CD13 thus represents a versatile target for the inhibition of tumor-induced angiogenesis through the tumor-selective administration of, e.g., cytotoxic substances. Furthermore, it enables the molecular imaging of tumor masses and the assessment of (neo)angiogenesis in animal models and in patients. Pharmacological inhibitors of APN/CD13 have been proven to reduce tumor growth and tumor progression in various APN/CD13-positive tumors.

19.
Biomedicines ; 10(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36289675

RESUMO

Cancer stem cells (CSCs) represent a small subset of slowly dividing cells with tumor-initiating ability. They can self-renew and differentiate into all the distinct cell populations within a tumor. CSCs are naturally resistant to chemotherapy or radiotherapy. CSCs, thus, can repopulate a tumor after therapy and are responsible for recurrence of disease. Stemness manifests itself through, among other things, the expression of stem cell markers, the ability to induce sphere formation and tumor growth in vivo, and resistance to chemotherapeutics and irradiation. Stemness is maintained by keeping levels of reactive oxygen species (ROS) low, which is achieved by enhanced activity of antioxidant pathways. Here, cellular sources of ROS, antioxidant pathways employed by CSCs, and underlying mechanisms to overcome resistance are discussed.

20.
ChemTexts ; 8(2): 12, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35287314

RESUMO

Macrophages are cells of the innate immune system and represent an important component of the first-line defense against pathogens and tumor cells. Here, their diverse functions in inflammation and tumor defense are described, and the mechanisms, tools, and activation pathways and states applied are presented. The main focus is on the role and origin of reactive oxygen species (ROS), the important signal pathways TLR/NF-κB, and the M1/​​M2 polarization of macrophages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA