Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 178(4): 964-979.e20, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398345

RESUMO

PIWI-interacting RNAs (piRNAs) guide transposon silencing in animals. The 22-30 nt piRNAs are processed in the cytoplasm from long non-coding RNAs that often lack RNA processing hallmarks of export-competent transcripts. By studying how these transcripts achieve nuclear export, we uncover an RNA export pathway specific for piRNA precursors in the Drosophila germline. This pathway requires Nxf3-Nxt1, a variant of the hetero-dimeric mRNA export receptor Nxf1-Nxt1. Nxf3 interacts with UAP56, a nuclear RNA helicase essential for mRNA export, and CG13741/Bootlegger, which recruits Nxf3-Nxt1 and UAP56 to heterochromatic piRNA source loci. Upon RNA cargo binding, Nxf3 achieves nuclear export via the exportin Crm1 and accumulates together with Bootlegger in peri-nuclear nuage, suggesting that after export, Nxf3-Bootlegger delivers precursor transcripts to the piRNA processing sites. These findings indicate that the piRNA pathway bypasses nuclear RNA surveillance systems to export unprocessed transcripts to the cytoplasm, a strategy also exploited by retroviruses.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Heterocromatina/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas Argonautas/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , RNA Helicases DEAD-box/metabolismo , Elementos de DNA Transponíveis , Inativação Gênica , Células Germinativas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcrição Gênica , Proteína Exportina 1
2.
EMBO J ; 42(10): e112053, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36762703

RESUMO

UFMylation involves the covalent modification of substrate proteins with UFM1 (Ubiquitin-fold modifier 1) and is important for maintaining ER homeostasis. Stalled translation triggers the UFMylation of ER-bound ribosomes and activates C53-mediated autophagy to clear toxic polypeptides. C53 contains noncanonical shuffled ATG8-interacting motifs (sAIMs) that are essential for ATG8 interaction and autophagy initiation. However, the mechanistic basis of sAIM-mediated ATG8 interaction remains unknown. Here, we show that C53 and sAIMs are conserved across eukaryotes but secondarily lost in fungi and various algal lineages. Biochemical assays showed that the unicellular alga Chlamydomonas reinhardtii has a functional UFMylation pathway, refuting the assumption that UFMylation is linked to multicellularity. Comparative structural analyses revealed that both UFM1 and ATG8 bind sAIMs in C53, but in a distinct way. Conversion of sAIMs into canonical AIMs impaired binding of C53 to UFM1, while strengthening ATG8 binding. Increased ATG8 binding led to the autoactivation of the C53 pathway and sensitization of Arabidopsis thaliana to ER stress. Altogether, our findings reveal an ancestral role of sAIMs in UFMylation-dependent fine-tuning of C53-mediated autophagy activation.


Assuntos
Peptídeos , Proteínas , Proteínas/metabolismo , Ribossomos/metabolismo , Autofagia , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo
3.
Nature ; 599(7885): 491-496, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34711951

RESUMO

Protein expression and turnover are controlled through a complex interplay of transcriptional, post-transcriptional and post-translational mechanisms to enable spatial and temporal regulation of cellular processes. To systematically elucidate such gene regulatory networks, we developed a CRISPR screening assay based on time-controlled Cas9 mutagenesis, intracellular immunostaining and fluorescence-activated cell sorting that enables the identification of regulatory factors independent of their effects on cellular fitness. We pioneered this approach by systematically probing the regulation of the transcription factor MYC, a master regulator of cell growth1-3. Our screens uncover a highly conserved protein, AKIRIN2, that is essentially required for nuclear protein degradation. We found that AKIRIN2 forms homodimers that directly bind to fully assembled 20S proteasomes to mediate their nuclear import. During mitosis, proteasomes are excluded from condensing chromatin and re-imported into newly formed daughter nuclei in a highly dynamic, AKIRIN2-dependent process. Cells undergoing mitosis in the absence of AKIRIN2 become devoid of nuclear proteasomes, rapidly causing accumulation of MYC and other nuclear proteins. Collectively, our study reveals a dedicated pathway controlling the nuclear import of proteasomes in vertebrates and establishes a scalable approach to decipher regulators in essential cellular processes.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Feminino , Genes myc , Humanos , Masculino , Mitose , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Proteólise
4.
Proc Natl Acad Sci U S A ; 120(42): e2302069120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37824524

RESUMO

Stem cells are essential for the development and organ regeneration of multicellular organisms, so their infection by pathogenic viruses must be prevented. Accordingly, mammalian stem cells are highly resistant to viral infection due to dedicated antiviral pathways including RNA interference (RNAi). In plants, a small group of stem cells harbored within the shoot apical meristem generate all postembryonic above-ground tissues, including the germline cells. Many viruses do not proliferate in these cells, yet the molecular bases of this exclusion remain only partially understood. Here, we show that a plant-encoded RNA-dependent RNA polymerase, after activation by the plant hormone salicylic acid, amplifies antiviral RNAi in infected tissues. This provides stem cells with RNA-based virus sequence information, which prevents virus proliferation. Furthermore, we find RNAi to be necessary for stem cell exclusion of several unrelated RNA viruses, despite their ability to efficiently suppress RNAi in the rest of the plant. This work elucidates a molecular pathway of great biological and economic relevance and lays the foundations for our future understanding of the unique systems underlying stem cell immunity.


Assuntos
Vírus de RNA , Ácido Salicílico , Animais , Interferência de RNA , Vírus de RNA/genética , Células-Tronco/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , RNA Interferente Pequeno/genética , RNA Viral/genética , Mamíferos/genética
5.
Genes Dev ; 31(20): 2099-2112, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29118048

RESUMO

Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRasG12D in mouse lung epithelial cells markedly impairs the progression of KRasG12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRasG12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer.


Assuntos
Neoplasias Pulmonares/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/fisiologia , Células Epiteliais Alveolares/metabolismo , Animais , Respiração Celular , Células Cultivadas , Metabolismo Energético , Feminino , Hormônios Esteroides Gonadais/fisiologia , Homeostase , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor Ativador de Fator Nuclear kappa-B/antagonistas & inibidores , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Mucosa Respiratória/metabolismo
6.
Mol Psychiatry ; 25(2): 428-441, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-29904149

RESUMO

Survival relies on optimizing behavioral responses through experience. Animals often react to acute stress by switching to passive behavioral responses when coping with environmental challenge. Despite recent advances in dissecting mammalian circuitry for Pavlovian fear, the neuronal basis underlying this form of non-Pavlovian anxiety-related behavioral plasticity remains poorly understood. Here, we report that aversive experience recruits the posterior paraventricular thalamus (PVT) and corticotropin-releasing hormone (CRH) and sensitizes a Pavlovian fear circuit to promote passive responding. Site-specific lesions and optogenetic manipulations reveal that PVT-to-central amygdala (CE) projections activate anxiogenic neuronal populations in the CE that release local CRH in response to acute stress. CRH potentiates basolateral (BLA)-CE connectivity and antagonizes inhibitory gating of CE output, a mechanism linked to Pavlovian fear, to facilitate the switch from active to passive behavior. Thus, PVT-amygdala fear circuitry uses inhibitory gating in the CE as a shared dynamic motif, but relies on different cellular mechanisms (postsynaptic long-term potentiation vs. presynaptic facilitation), to multiplex active/passive response bias in Pavlovian and non-Pavlovian behavioral plasticity. These results establish a framework promoting stress-induced passive responding, which might contribute to passive emotional coping seen in human fear- and anxiety-related disorders.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Medo/fisiologia , Estresse Psicológico/metabolismo , Adaptação Psicológica/fisiologia , Afeto , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/metabolismo , Transtornos de Ansiedade/metabolismo , Núcleo Central da Amígdala/metabolismo , Emoções/fisiologia , Humanos , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Núcleos da Linha Média do Tálamo/fisiopatologia , Neurônios/metabolismo , Tálamo/fisiopatologia
7.
PLoS Genet ; 14(10): e1007698, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30312291

RESUMO

Genome amplification and cellular senescence are commonly associated with pathological processes. While physiological roles for polyploidization and senescence have been described in mouse development, controversy exists over their significance in humans. Here, we describe tetraploidization and senescence as phenomena of normal human placenta development. During pregnancy, placental extravillous trophoblasts (EVTs) invade the pregnant endometrium, termed decidua, to establish an adapted microenvironment required for the developing embryo. This process is critically dependent on continuous cell proliferation and differentiation, which is thought to follow the classical model of cell cycle arrest prior to terminal differentiation. Strikingly, flow cytometry and DNAseq revealed that EVT formation is accompanied with a genome-wide polyploidization, independent of mitotic cycles. DNA replication in these cells was analysed by a fluorescent cell-cycle indicator reporter system, cell cycle marker expression and EdU incorporation. Upon invasion into the decidua, EVTs widely lose their replicative potential and enter a senescent state characterized by high senescence-associated (SA) ß-galactosidase activity, induction of a SA secretory phenotype as well as typical metabolic alterations. Furthermore, we show that the shift from endocycle-dependent genome amplification to growth arrest is disturbed in androgenic complete hydatidiform moles (CHM), a hyperplastic pregnancy disorder associated with increased risk of developing choriocarinoma. Senescence is decreased in CHM-EVTs, accompanied by exacerbated endoreduplication and hyperploidy. We propose induction of cellular senescence as a ploidy-limiting mechanism during normal human placentation and unravel a link between excessive polyploidization and reduced senescence in CHM.


Assuntos
Senescência Celular/fisiologia , Placenta/metabolismo , Placenta/fisiologia , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Movimento Celular , Proliferação de Células , Endométrio/citologia , Feminino , Genoma/fisiologia , Humanos , Placentação/genética , Placentação/fisiologia , Poliploidia , Gravidez , Primeiro Trimestre da Gravidez , Cultura Primária de Células , Tetraploidia , Trofoblastos/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(24): E4884-E4893, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28559333

RESUMO

Plant cells are embedded within cell walls, which provide structural integrity, but also spatially constrain cells, and must therefore be modified to allow cellular expansion. The long-standing acid growth theory postulates that auxin triggers apoplast acidification, thereby activating cell wall-loosening enzymes that enable cell expansion in shoots. Interestingly, this model remains heavily debated in roots, because of both the complex role of auxin in plant development as well as technical limitations in investigating apoplastic pH at cellular resolution. Here, we introduce 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) as a suitable fluorescent pH indicator for assessing apoplastic pH, and thus acid growth, at a cellular resolution in Arabidopsis thaliana roots. Using HPTS, we demonstrate that cell wall acidification triggers cellular expansion, which is correlated with a preceding increase of auxin signaling. Reduction in auxin levels, perception, or signaling abolishes both the extracellular acidification and cellular expansion. These findings jointly suggest that endogenous auxin controls apoplastic acidification and the onset of cellular elongation in roots. In contrast, an endogenous or exogenous increase in auxin levels induces a transient alkalinization of the extracellular matrix, reducing cellular elongation. The receptor-like kinase FERONIA is required for this physiological process, which affects cellular root expansion during the gravitropic response. These findings pinpoint a complex, presumably concentration-dependent role for auxin in apoplastic pH regulation, steering the rate of root cell expansion and gravitropic response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Células Vegetais/metabolismo , Raízes de Plantas/metabolismo , Transporte Biológico/fisiologia , Parede Celular/metabolismo , Matriz Extracelular/metabolismo , Concentração de Íons de Hidrogênio , Transdução de Sinais/fisiologia
9.
Ann Bot ; 115(2): 227-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25527195

RESUMO

BACKGROUND AND AIMS: Some carnivorous plants trap not only small animals but also algae and pollen grains. However, it remains unclear if these trapped particles are useless bycatch or whether they provide nutrients for the plant. The present study examines this question in Utricularia, which forms the largest and most widely spread genus of carnivorous plants, and which captures prey by means of sophisticated suction traps. METHODS: Utricularia plants of three different species (U. australis, U. vulgaris and U. minor) were collected in eight different water bodies including peat bogs, lakes and artificial ponds in three regions of Austria. The prey spectrum of each population was analysed qualitatively and quantitatively, and correlated with data on growth and propagation, C/N ratio and δ(15)N. KEY RESULTS: More than 50 % of the prey of the Utricularia populations investigated consisted of algae and pollen, and U. vulgaris in particular was found to capture large amounts of gymnosperm pollen. The capture of algae and pollen grains was strongly correlated with most growth parameters, including weight, length, budding and elongation of internodes. The C/N ratio, however, was less well correlated. Other prey, such as moss leaflets, fungal hyphae and mineral particles, were negatively correlated with most growth parameters. δ(15)N was positively correlated with prey capture, but in situations where algae were the main prey objects it was found that the standard formula for calculation of prey-derived N was no longer applicable. CONCLUSIONS: The mass capture of immotile particles confirms the ecological importance of autonomous firing of the traps. Although the C/N ratio was little influenced by algae, they clearly provide other nutrients, possibly including phosphorus and trace elements. By contrast, mosses, fungi and mineral particles appear to be useless bycatch. Correlations with chemical parameters indicate that Utricularia benefits from nutrient-rich waters by uptake of inorganic nutrients from the water, by the production of more traps per unit of shoot length, and by the capture of more prey particles per trap, as nutrient-rich waters harbour more prey organisms.


Assuntos
Cadeia Alimentar , Magnoliopsida/fisiologia , Fenômenos Fisiológicos Vegetais , Áustria , Embriófitas/fisiologia , Água Doce/química , Magnoliopsida/crescimento & desenvolvimento , Isótopos de Nitrogênio/análise , Reprodução , Especificidade da Espécie
10.
Cell Stem Cell ; 31(6): 866-885.e14, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718796

RESUMO

Mutations in ARID1B, a member of the mSWI/SNF complex, cause severe neurodevelopmental phenotypes with elusive mechanisms in humans. The most common structural abnormality in the brain of ARID1B patients is agenesis of the corpus callosum (ACC), characterized by the absence of an interhemispheric white matter tract that connects distant cortical regions. Here, we find that neurons expressing SATB2, a determinant of callosal projection neuron (CPN) identity, show impaired maturation in ARID1B+/- neural organoids. Molecularly, a reduction in chromatin accessibility of genomic regions targeted by TCF-like, NFI-like, and ARID-like transcription factors drives the differential expression of genes required for corpus callosum (CC) development. Through an in vitro model of the CC tract, we demonstrate that this transcriptional dysregulation impairs the formation of long-range axonal projections, causing structural underconnectivity. Our study uncovers new functions of the mSWI/SNF during human corticogenesis, identifying cell-autonomous axonogenesis defects in SATB2+ neurons as a cause of ACC in ARID1B patients.


Assuntos
Axônios , Corpo Caloso , Proteínas de Ligação a DNA , Organoides , Fatores de Transcrição , Humanos , Corpo Caloso/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Organoides/metabolismo , Axônios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Transcrição Gênica , Neurônios/metabolismo
11.
Plant J ; 71(2): 303-13, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22417315

RESUMO

Carnivorous plants trap, digest and absorb animals in order to supplement their mineral nutrition. Nutrients absorbed by the plant include different nitrogen species, phosphate, potassium, trace elements and small organic compounds. Uptake is usually thought to be performed via specific channels, but this study provides evidence that endocytosis is involved as well. Traps of the carnivorous plants Nepenthes coccinea, Nepenthes ventrata, Cephalotus follicularis, Drosophyllum lusitanicum, Drosera capensis, Dionaea muscipula, Aldrovanda vesiculosa, Genlisea violacea × lobata, Sarracenia psittacina and Sarracenia purpurea were stained with methylene blue in order to identify possible sites of uptake. The permeable parts of the traps were incubated with fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA) and other fluorescent endocytosis markers, combined with the soluble protein BSA or respiratory inhibitors. Uptake was studied by confocal microscopy. In Nepenthes, small fluorescent vesicles became visible 1 h after incubation with FITC-BSA. These vesicles fused to larger compartments within 30 h. A similar behaviour was found in the related genera Drosera, Dionaea, Aldrovanda and Drosophyllum but also in Cephalotus with glands of different evolutionary origin. In Genlisea and Sarracenia, no evidence for endocytosis was found. We propose that in many carnivorous plants, nutrient uptake by carriers is supplemented by endocytosis, which enables absorption and intracellular digestion of whole proteins. The advantage for the plant of reducing secretion of enzymes for extracellular digestion is evident.


Assuntos
Endocitose/fisiologia , Magnoliopsida/citologia , Magnoliopsida/fisiologia , Animais , Transporte Biológico , Membrana Celular/fisiologia , Alimentos , Magnoliopsida/enzimologia , Microscopia de Fluorescência , Modelos Biológicos , Folhas de Planta/citologia , Folhas de Planta/fisiologia
12.
EMBO Mol Med ; 15(7): e16758, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37226685

RESUMO

FAM3C/ILEI is an important cytokine for tumor progression and metastasis. However, its involvement in inflammation remains elusive. Here, we show that ILEI protein is highly expressed in psoriatic lesions. Inducible keratinocyte-specific ILEI overexpression in mice (K5-ILEIind ) recapitulates many aspects of psoriasis following TPA challenge, primarily manifested by impaired epidermal differentiation and increased neutrophil recruitment. Mechanistically, ILEI triggers Erk and Akt signaling, which then activates STAT3 via Ser727 phosphorylation. Keratinocyte-specific ILEI deletion ameliorates TPA-induced skin inflammation. A transcriptomic ILEI signature obtained from the K5-ILEIind model shows enrichment in several signaling pathways also found in psoriasis and identifies urokinase as a targetable enzyme to counteract ILEI activity. Pharmacological inhibition of urokinase in TPA-induced K5-ILEIind mice results in significant improvement of psoriasiform symptoms by reducing ILEI secretion. The ILEI signature distinguishes psoriasis from healthy skin with uPA ranking among the top "separator" genes. Our study identifies ILEI as a key driver in psoriasis, indicates the relevance of ILEI-regulated genes for disease manifestation, and shows the clinical impact of ILEI and urokinase as novel potential therapeutic targets in psoriasis.


Assuntos
Psoríase , Ativador de Plasminogênio Tipo Uroquinase , Camundongos , Animais , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Citocinas/metabolismo , Queratinócitos , Transdução de Sinais
13.
Ann Bot ; 107(2): 181-94, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21159782

RESUMO

BACKGROUND: Carnivorous pitcher plants (CPPs) use cone-shaped leaves to trap animals for nutrient supply but are not able to kill all intruders of their traps. Numerous species, ranging from bacteria to vertrebrates, survive and propagate in the otherwise deadly traps. This paper reviews the literature on phytotelmata of CPPs. PITCHER: Fluid as a Habitat The volumes of pitchers range from 0·2 mL to 1·5 L. In Nepenthes and Cephalotus, the fluid is secreted by the trap; the other genera collect rain water. The fluid is usually acidic, rich in O(2) and contains digestive enzymes. In some taxa, toxins or detergents are found, or the fluid is extremely viscous. In Heliamphora or Sarracenia, the fluid differs little from pure water. INQUILINE: Diversity Pitcher inquilines comprise bacteria, protozoa, algae, fungi, rotifers, crustaceans, arachnids, insects and amphibia. The dominant groups are protists and Dipteran larvae. The various species of CPPs host different sets of inquilines. Sarracenia purpurea hosts up to 165 species of inquilines, followed by Nepenthes ampullaria with 59 species, compared with only three species from Brocchinia reducta. Reasons for these differences include size, the life span of the pitcher as well as its fluid. MUTUALISTIC: Activities Inquilines closely interact with their host. Some live as parasites, but the vast majority are mutualists. Beneficial activities include secretion of enzymes, feeding on the plant's prey and successive excretion of inorganic nutrients, mechanical break up of the prey, removal of excessive prey and assimilation of atmospheric N(2). CONCLUSIONS: There is strong evidence that CPPs influence their phytotelm. Two strategies can be distinguished: (1) Nepenthes and Cephalotus produce acidic, toxic or digestive fluids and host a limited diversity of inquilines. (2) Genera without efficient enzymes such as Sarracenia or Heliamphora host diverse organisms and depend to a large extent on their symbionts for prey utilization.


Assuntos
Biodiversidade , Magnoliopsida/química , Magnoliopsida/fisiologia , Componentes Aéreos da Planta/anatomia & histologia , Simbiose , Bromeliaceae/anatomia & histologia , Bromeliaceae/fisiologia , Caryophyllaceae/anatomia & histologia , Caryophyllaceae/fisiologia , Ecossistema , Magnoliopsida/anatomia & histologia , Componentes Aéreos da Planta/fisiologia , Sarraceniaceae/anatomia & histologia , Sarraceniaceae/fisiologia
14.
Sci Adv ; 7(42): eabh1434, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34652942

RESUMO

Muscle function requires unique structural and metabolic adaptations that can render muscle cells selectively vulnerable, with mutations in some ubiquitously expressed genes causing myopathies but sparing other tissues. We uncovered a muscle cell vulnerability by studying miR-1, a deeply conserved, muscle-specific microRNA whose ablation causes various muscle defects. Using Caenorhabditis elegans, we found that miR-1 represses multiple subunits of the ubiquitous vacuolar adenosine triphosphatase (V-ATPase) complex, which is essential for internal compartment acidification and metabolic signaling. V-ATPase subunits are predicted miR-1 targets in animals ranging from C. elegans to humans, and we experimentally validated this in Drosophila. Unexpectedly, up-regulation of V-ATPase subunits upon miR-1 deletion causes reduced V-ATPase function due to defects in complex assembly. These results reveal V-ATPase assembly as a conserved muscle cell vulnerability and support a previously unknown role for microRNAs in the regulation of protein complexes.

15.
Curr Biol ; 29(23): 4052-4059.e4, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31735675

RESUMO

A diverse array of vertebrate species employs the Earth's magnetic field to assist navigation. Despite compelling behavioral evidence that a magnetic sense exists, the location of the primary sensory cells and the underlying molecular mechanisms remain unknown [1]. To date, most research has focused on a light-dependent radical-pair-based concept and a system that is proposed to rely on biogenic magnetite (Fe3O4) [2, 3]. Here, we explore an overlooked hypothesis that predicts that animals detect magnetic fields by electromagnetic induction within the semicircular canals of the inner ear [4]. Employing an assay that relies on the neuronal activity marker C-FOS, we confirm that magnetic exposure results in activation of the caudal vestibular nuclei in pigeons that is independent of light [5]. We show experimentally and by physical calculations that magnetic stimulation can induce electric fields in the pigeon semicircular canals that are within the physiological range of known electroreceptive systems. Drawing on this finding, we report the presence of a splice isoform of a voltage-gated calcium channel (CaV1.3) in the pigeon inner ear that has been shown to mediate electroreception in skates and sharks [6]. We propose that pigeons detect magnetic fields by electromagnetic induction within the semicircular canals that is dependent on the presence of apically located voltage-gated cation channels in a population of electrosensory hair cells.


Assuntos
Columbidae/fisiologia , Orelha Interna/fisiologia , Campos Magnéticos , Sensação , Animais
16.
FEBS J ; 284(20): 3484-3505, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28837266

RESUMO

The interleukin-like epithelial-to-mesenchymal transition (EMT) inducer (ILEI)/FAM3C is a member of the highly homologous FAM3 family and is essential for EMT and metastasis formation. It is upregulated in several cancers, and its altered subcellular localization strongly correlates with poor survival. However, the mechanism of ILEI action, including the structural requirements for ILEI activity, remains elusive. Here, we show that ILEI formed both monomers and covalent dimers in cancer cell lines and in tumors. Using mutational analysis and pulse-chase experiments, we found that the four ILEI cysteines, conserved throughout the FAM3 family and involved in disulfide bond formation were essential for extracellular ILEI accumulation in cultured cells. Modification of a fifth cysteine (C185), unique for ILEI, did not alter protein secretion, but completely inhibited ILEI dimerization. Wild-type ILEI monomers, but not C185A mutants, could be converted into covalent dimers extracellularly upon overexpression by intramolecular-to-intermolecular disulfide bond isomerization. Incubation of purified ILEI with cell culture medium showed that dimerization was triggered by bovine serum in a dose- and time-dependent manner. Purified ILEI dimers induced EMT and trans-well invasion of cancer cells in vitro. In contrast, ILEI monomers and the dimerization-defective C185A mutant affected only cell motility as detected by scratch assays and cell tracking via time-lapse microscopy. Importantly, tumor cells overexpressing wild-type ILEI caused large tumors and lung metastases in nude mice, while cells overexpressing the dimerization-defective C185A mutant behaved similar to control cells. These data show that covalent ILEI self-assembly is essential for EMT induction, elevated tumor growth, and metastasis.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Citocinas/química , Citocinas/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/secundário , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Animais , Neoplasias da Mama/metabolismo , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Invasividade Neoplásica , Multimerização Proteica , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
PLoS One ; 8(11): e79588, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260257

RESUMO

The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two differentiating neurons. Although single mitotic divisions of neuroblasts can easily be imaged in real time, the lack of long term imaging procedures has limited the use of neuroblast live imaging for lineage analysis. Here we describe a method that allows live imaging of cultured Drosophila neuroblasts over multiple cell cycles for up to 24 hours. We describe a 4D image analysis protocol that can be used to extract cell cycle times and growth rates from the resulting movies in an automated manner. We use it to perform lineage analysis in type II neuroblasts where clonal analysis has indicated the presence of a transit-amplifying population that potentiates the number of neurons. Indeed, our experiments verify type II lineages and provide quantitative parameters for all cell types in those lineages. As defects in type II neuroblast lineages can result in brain tumor formation, our lineage analysis method will allow more detailed and quantitative analysis of tumorigenesis and asymmetric cell division in the Drosophila brain.


Assuntos
Encéfalo/citologia , Células-Tronco Neurais/citologia , Animais , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA