Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Nat Immunol ; 25(7): 1193-1206, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834865

RESUMO

Immune cells experience large cell shape changes during environmental patrolling because of the physical constraints that they encounter while migrating through tissues. These cells can adapt to such deformation events using dedicated shape-sensing pathways. However, how shape sensing affects immune cell function is mostly unknown. Here, we identify a shape-sensing mechanism that increases the expression of the chemokine receptor CCR7 and guides dendritic cell migration from peripheral tissues to lymph nodes at steady state. This mechanism relies on the lipid metabolism enzyme cPLA2, requires nuclear envelope tensioning and is finely tuned by the ARP2/3 actin nucleation complex. We also show that this shape-sensing axis reprograms dendritic cell transcription by activating an IKKß-NF-κB-dependent pathway known to control their tolerogenic potential. These results indicate that cell shape changes experienced by immune cells can define their migratory behavior and immunoregulatory properties and reveal a contribution of the physical properties of tissues to adaptive immunity.


Assuntos
Movimento Celular , Células Dendríticas , Homeostase , Linfonodos , Camundongos Endogâmicos C57BL , Receptores CCR7 , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Linfonodos/imunologia , Linfonodos/citologia , Receptores CCR7/metabolismo , Camundongos , Movimento Celular/imunologia , Forma Celular , NF-kappa B/metabolismo , Camundongos Knockout , Transdução de Sinais/imunologia , Quinase I-kappa B/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo
2.
Cell ; 183(2): 411-428.e16, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32970988

RESUMO

The colon is primarily responsible for absorbing fluids. It contains a large number of microorganisms including fungi, which are enriched in its distal segment. The colonic mucosa must therefore tightly regulate fluid influx to control absorption of fungal metabolites, which can be toxic to epithelial cells and lead to barrier dysfunction. How this is achieved remains unknown. Here, we describe a mechanism by which the innate immune system allows rapid quality check of absorbed fluids to avoid intoxication of colonocytes. This mechanism relies on a population of distal colon macrophages that are equipped with "balloon-like" protrusions (BLPs) inserted in the epithelium, which sample absorbed fluids. In the absence of macrophages or BLPs, epithelial cells keep absorbing fluids containing fungal products, leading to their death and subsequent loss of epithelial barrier integrity. These results reveal an unexpected and essential role of macrophages in the maintenance of colon-microbiota interactions in homeostasis. VIDEO ABSTRACT.


Assuntos
Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Animais , Colo/metabolismo , Células Epiteliais/metabolismo , Epitélio , Feminino , Homeostase , Imunidade Inata/imunologia , Mucosa Intestinal/microbiologia , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Transdução de Sinais
3.
Immunity ; 55(6): 965-967, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35704996

RESUMO

The relevance of cross-dressing as an antigen presentation mechanism in antitumor responses is not fully understood. In this issue of Immunity, MacNabb et al. (2022) report that dendritic cells use cross-dressing as an effective mechanism to trigger CD8+ T cell antitumor immunity.


Assuntos
Apresentação de Antígeno , Células Dendríticas , Linfócitos T CD8-Positivos , Apresentação Cruzada
4.
Immunity ; 55(12): 2336-2351.e12, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36462502

RESUMO

Therapeutic promotion of intestinal regeneration holds great promise, but defining the cellular mechanisms that influence tissue regeneration remains an unmet challenge. To gain insight into the process of mucosal healing, we longitudinally examined the immune cell composition during intestinal damage and regeneration. B cells were the dominant cell type in the healing colon, and single-cell RNA sequencing (scRNA-seq) revealed expansion of an IFN-induced B cell subset during experimental mucosal healing that predominantly located in damaged areas and associated with colitis severity. B cell depletion accelerated recovery upon injury, decreased epithelial ulceration, and enhanced gene expression programs associated with tissue remodeling. scRNA-seq from the epithelial and stromal compartments combined with spatial transcriptomics and multiplex immunostaining showed that B cells decreased interactions between stromal and epithelial cells during mucosal healing. Activated B cells disrupted the epithelial-stromal cross talk required for organoid survival. Thus, B cell expansion during injury impairs epithelial-stromal cell interactions required for mucosal healing, with implications for the treatment of IBD.


Assuntos
Colite , Mucosa Intestinal , Animais , Cicatrização , Células Epiteliais/metabolismo , Epitélio , Modelos Animais de Doenças
5.
Immunity ; 55(1): 129-144.e8, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34910930

RESUMO

Dendritic cells (DCs) patrol tissues and transport antigens to lymph nodes to initiate adaptive immune responses. Within tissues, DCs constitute a complex cell population composed of distinct subsets that can exhibit different activation states and functions. How tissue-specific cues orchestrate DC diversification remains elusive. Here, we show that the small intestine included two pools of cDC2s originating from common pre-DC precursors: (1) lamina propria (LP) CD103+CD11b+ cDC2s that were mature-like proinflammatory cells and (2) intraepithelial cDC2s that exhibited an immature-like phenotype as well as tolerogenic properties. These phenotypes resulted from the action of food-derived retinoic acid (ATRA), which enhanced actomyosin contractility and promoted LP cDC2 transmigration into the epithelium. There, cDC2s were imprinted by environmental cues, including ATRA itself and the mucus component Muc2. Hence, by reaching distinct subtissular niches, DCs can exist as immature and mature cells within the same tissue, revealing an additional mechanism of DC functional diversification.


Assuntos
Células Dendríticas/imunologia , Inflamação/imunologia , Mucosa Intestinal/patologia , Linfócitos T/imunologia , Actomiosina/metabolismo , Animais , Apresentação de Antígeno , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Diferenciação Celular , Movimento Celular , Células Cultivadas , Tolerância Imunológica , Cadeias alfa de Integrinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucina-2/imunologia , Tretinoína/metabolismo
6.
Cell ; 161(2): 374-86, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25799384

RESUMO

Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to cell migration speed. We suggest that this universal coupling constitutes a generic law of cell migration, which originates in the advection of polarity cues by an actin cytoskeleton undergoing flows at the cellular scale. Our analysis relies on a theoretical model that we validate by measuring the persistence of cells upon modulation of actin flow speeds and upon optogenetic manipulation of the binding of an actin regulator to actin filaments. Beyond the quantitative prediction of the coupling, the model yields a generic phase diagram of cellular trajectories, which recapitulates the full range of observed migration patterns.


Assuntos
Actinas/metabolismo , Movimento Celular , Modelos Biológicos , Animais , Linhagem Celular , Polaridade Celular , Células Cultivadas , Citoesqueleto/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Oryzias
7.
Semin Cell Dev Biol ; 150-151: 50-57, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635104

RESUMO

The intestine comprises the largest proportion of immune cells in the body. It is continuously exposed to new antigens and immune stimuli from the diet, microbiota but also from intestinal pathogens. In this review, we describe the main populations of immune cells present along the intestine, both from the innate and adaptive immune system. We later discuss how intestinal niches significantly impact the phenotype and function of gut immune populations at steady state and upon infection.


Assuntos
Imunidade nas Mucosas , Mucosa Intestinal , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Imunidade Inata , Imunidade Adaptativa
8.
Immunity ; 45(6): 1205-1218, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28002729

RESUMO

Inflammation triggers the differentiation of Ly6Chi monocytes into microbicidal macrophages or monocyte-derived dendritic cells (moDCs). Yet, it is unclear whether environmental inflammatory cues control the polarization of monocytes toward each of these fates or whether specialized monocyte progenitor subsets exist before inflammation. Here, we have shown that naive monocytes are phenotypically heterogeneous and contain an NR4A1- and Flt3L-independent, CCR2-dependent, Flt3+CD11c-MHCII+PU.1hi subset. This subset acted as a precursor for FcγRIII+PD-L2+CD209a+, GM-CSF-dependent moDCs but was distal from the DC lineage, as shown by fate-mapping experiments using Zbtb46. By contrast, Flt3-CD11c-MHCII-PU.1lo monocytes differentiated into FcγRIII+PD-L2-CD209a-iNOS+ macrophages upon microbial stimulation. Importantly, Sfpi1 haploinsufficiency genetically distinguished the precursor activities of monocytes toward moDCs or microbicidal macrophages. Indeed, Sfpi1+/- mice had reduced Flt3+CD11c-MHCII+ monocytes and GM-CSF-dependent FcγRIII+PD-L2+CD209a+ moDCs but generated iNOS+ macrophages more efficiently. Therefore, intercellular disparities of PU.1 expression within naive monocytes segregate progenitor activity for inflammatory iNOS+ macrophages or moDCs.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Transferência Adotiva , Animais , Antígenos Ly/imunologia , Separação Celular , Células Dendríticas/citologia , Citometria de Fluxo , Macrófagos/citologia , Camundongos , Monócitos/citologia , Óxido Nítrico Sintase Tipo II/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
9.
Immunity ; 43(6): 1087-100, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26682983

RESUMO

The initiation of cytotoxic immune responses by dendritic cells (DCs) requires the presentation of antigenic peptides derived from phagocytosed microbes and infected or dead cells to CD8(+) T cells, a process called cross-presentation. Antigen cross-presentation by non-activated DCs, however, is not sufficient for the effective induction of immune responses. Additionally, DCs need to be activated through innate receptors, like Toll-like receptors (TLRs). During DC maturation, cross-presentation efficiency is first upregulated and then turned off. Here we show that during this transient phase of enhanced cross-presentation, phago-lysosome fusion was blocked by the topological re-organization of lysosomes into perinuclear clusters. LPS-induced lysosomal clustering, inhibition of phago-lysosome fusion and enhanced cross-presentation, all required expression of the GTPase Rab34. We conclude that TLR4 engagement induces a Rab34-dependent re-organization of lysosomal distribution that delays antigen degradation to transiently enhance cross-presentation, thereby optimizing the priming of CD8(+) T cell responses against pathogens.


Assuntos
Apresentação de Antígeno/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/imunologia , Feminino , Citometria de Fluxo , Lisossomos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fagossomos/imunologia , RNA Interferente Pequeno , Transfecção , Proteínas rab de Ligação ao GTP/imunologia
10.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903241

RESUMO

Sprouting angiogenesis is fundamental for development and contributes to cancer, diabetic retinopathy, and cardiovascular diseases. Sprouting angiogenesis depends on the invasive properties of endothelial tip cells. However, there is very limited knowledge on how tip cells invade into tissues. Here, we show that endothelial tip cells use dactylopodia as the main cellular protrusion for invasion into nonvascular extracellular matrix. We show that dactylopodia and filopodia protrusions are balanced by myosin IIA (NMIIA) and actin-related protein 2/3 (Arp2/3) activity. Endothelial cell-autonomous ablation of NMIIA promotes excessive dactylopodia formation in detriment of filopodia. Conversely, endothelial cell-autonomous ablation of Arp2/3 prevents dactylopodia development and leads to excessive filopodia formation. We further show that NMIIA inhibits Rac1-dependent activation of Arp2/3 by regulating the maturation state of focal adhesions. Our discoveries establish a comprehensive model of how endothelial tip cells regulate its protrusive activity and will pave the way toward strategies to block invasive tip cells during sprouting angiogenesis.


Assuntos
Células Endoteliais/citologia , Miosina não Muscular Tipo IIA/genética , Pseudópodes/genética , Proteínas rac1 de Ligação ao GTP/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/química , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Animais , Extensões da Superfície Celular , Células Endoteliais/metabolismo , Camundongos , Neovascularização Patológica/genética , Neovascularização Fisiológica/genética , Miosina não Muscular Tipo IIA/química , Ativação Transcricional/genética
11.
EMBO J ; 38(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30902847

RESUMO

The centrosome is the main microtubule-organizing centre. It also organizes a local network of actin filaments. However, the precise function of the actin network at the centrosome is not well understood. Here, we show that increasing densities of actin filaments at the centrosome of lymphocytes are correlated with reduced amounts of microtubules. Furthermore, lymphocyte activation resulted in disassembly of centrosomal actin and an increase in microtubule number. To further investigate the direct crosstalk between actin and microtubules at the centrosome, we performed in vitro reconstitution assays based on (i) purified centrosomes and (ii) on the co-micropatterning of microtubule seeds and actin filaments. These two assays demonstrated that actin filaments constitute a physical barrier blocking elongation of nascent microtubules. Finally, we showed that cell adhesion and cell spreading lead to lower densities of centrosomal actin, thus resulting in higher microtubule growth. We therefore propose a novel mechanism, by which the number of centrosomal microtubules is regulated by cell adhesion and actin-network architecture.


Assuntos
Citoesqueleto de Actina/fisiologia , Centrossomo/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Animais , Bovinos , Células Cultivadas , Humanos , Células Jurkat , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo
12.
J Cell Sci ; 134(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34494097

RESUMO

Lysosomal signaling facilitates the migration of immune cells by releasing Ca2+ to activate the actin-based motor myosin II at the cell rear. However, how the actomyosin cytoskeleton physically associates to lysosomes is unknown. We have previously identified myosin II as a direct interactor of Rab7b, a small GTPase that mediates the transport from late endosomes/lysosomes to the trans-Golgi network (TGN). Here, we show that Rab7b regulates the migration of dendritic cells (DCs) in one- and three-dimensional environments. DCs are immune sentinels that transport antigens from peripheral tissues to lymph nodes to activate T lymphocytes and initiate adaptive immune responses. We found that the lack of Rab7b reduces myosin II light chain phosphorylation and the activation of the transcription factor EB (TFEB), which controls lysosomal signaling and is required for fast DC migration. Furthermore, we demonstrate that Rab7b interacts with the lysosomal Ca2+ channel TRPML1 (also known as MCOLN1), enabling the local activation of myosin II at the cell rear. Taken together, our findings identify Rab7b as the missing physical link between lysosomes and the actomyosin cytoskeleton, allowing control of immune cell migration through lysosomal signaling. This article has an associated First Person interview with the first author of the paper.


Assuntos
Actomiosina , Lisossomos , Citoesqueleto , Células Dendríticas , Endossomos , Humanos
13.
Subcell Biochem ; 98: 85-102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35378704

RESUMO

Macropinocytosis is a nonspecific mechanism by which cells compulsively "drink" the surrounding extracellular fluids in order to feed themselves or sample the molecules therein, hence gaining information about their environment. This process is cell-intrinsically incompatible with the migration of many cells, implying that the two functions are antagonistic. The migrating cell uses a molecular switch to stop and explore its surrounding fluid by macropinocytosis, after which it employs the same molecular machinery to start migrating again to examine another location. This cycle of migration/macropinocytosis allows cells to explore tissues, and it is key to a range of physiological processes. Evidence of this evolutionarily conserved antagonism between the two processes can be found in several cell types-immune cells, for example, being particularly adept-and ancient organisms (e.g., the social amoeba Dictyostelium discoideum). How macropinocytosis and migration are negatively coupled is the subject of this chapter.


Assuntos
Dictyostelium , Movimento Celular , Dictyostelium/metabolismo , Pinocitose/fisiologia
14.
Proc Natl Acad Sci U S A ; 117(2): 826-835, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31882452

RESUMO

Dendritic cells "patrol" the human body to detect pathogens. In their search, dendritic cells perform a random walk by amoeboid migration. The efficiency of pathogen detection depends on the properties of the random walk. It is not known how the dendritic cells control these properties. Here, we quantify dendritic cell migration under well-defined 2-dimensional confinement and in a 3-dimensional collagen matrix through recording their long-term trajectories. We find 2 different migration states: persistent migration, during which the dendritic cells move along curved paths, and diffusive migration, which is characterized by successive sharp turns. These states exhibit differences in the actin distributions. Our theoretical and experimental analyses indicate that this kind of motion can be generated by spontaneous actin polymerization waves that contribute to dendritic cell polarization and migration. The relative distributions of persistent and diffusive migration can be changed by modification of the molecular actin filament nucleation and assembly rates. Thus, dendritic cells can control their migration patterns and adapt to specific environments. Our study offers an additional perspective on how dendritic cells tune their searches for pathogens.


Assuntos
Actinas/metabolismo , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Sinais (Psicologia) , Células Dendríticas/fisiologia , Actinas/ultraestrutura , Medula Óssea , Membrana Celular , Forma Celular , Colágeno , Células Dendríticas/citologia , Géis , Humanos , Polimerização
15.
J Cell Sci ; 133(5)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122988

RESUMO

Studies in recent years have shed light on the particular features of cytoskeleton dynamics in immune cells, challenging the classical picture drawn from typical adherent cell lines. New mechanisms linking the dynamics of the membrane-cytoskeleton interface to the mechanical properties of immune cells have been uncovered and shown to be essential for immune surveillance functions. In this Essay, we discuss these features, and propose immune cells as a new playground for cell biologists who try to understand how cells adapt to different microenvironments to fulfil their functions efficiently.


Assuntos
Citoesqueleto
16.
Nat Immunol ; 11(10): 953-61, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20835229

RESUMO

During trafficking through tissues, T cells fine-tune their motility to balance the extent and duration of cell-surface contacts versus the need to traverse an entire organ. Here we show that in vivo, myosin IIA-deficient T cells had a triad of defects, including overadherence to high-endothelial venules, less interstitial migration and inefficient completion of recirculation through lymph nodes. Spatiotemporal analysis of three-dimensional motility in microchannels showed that the degree of confinement and myosin IIA function, rather than integrin adhesion (as proposed by the haptokinetic model), optimized motility rate. This motility occurred via a myosin IIA-dependent rapid 'walking' mode with multiple small and simultaneous adhesions to the substrate, which prevented spurious and prolonged adhesions. Adhesion discrimination provided by myosin IIA is thus necessary for the optimization of motility through complex tissues.


Assuntos
Adesão Celular/fisiologia , Movimento Celular , Linfonodos/imunologia , Miosina não Muscular Tipo IIA/fisiologia , Linfócitos T/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Trends Immunol ; 39(8): 632-643, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29779848

RESUMO

The function of most immune cells depends on their ability to migrate through complex microenvironments, either randomly to patrol for the presence of antigens or directionally to reach their next site of action. The actin cytoskeleton and its partners are key conductors of immune cell migration as they control the intrinsic migratory properties of leukocytes as well as their capacity to respond to cues present in their environment. In this review we focus on the latest discoveries regarding the role of the actomyosin cytoskeleton in optimizing immune cell migration in complex environments, with a special focus on recent insights provided by physical modeling.


Assuntos
Citoesqueleto de Actina/fisiologia , Actomiosina/metabolismo , Movimento Celular , Microambiente Celular , Leucócitos/fisiologia , Animais , Humanos
18.
Immunity ; 37(2): 351-63, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22683126

RESUMO

Upon antigen recognition, T cells form either static (synapses) or migratory (kinapses) contacts with antigen-presenting cells. Addressing whether synapses and kinapses result in distinct T cell receptor (TCR) signals has been hampered by the inability to simultaneously assess T cell phenotype and behavior. Here, we introduced dynamic in situ cytometry (DISC), a combination of intravital multiphoton imaging and flow cytometry-like phenotypic analysis. Taking advantage of CD62L shedding as a marker of early TCR signaling, we examined how T cells sense TCR ligands of varying affinities in vivo. We uncovered three modes of antigen recognition: synapses with the strongest TCR signals, kinapses with robust signaling, and kinapses with weak signaling. As illustrated here, the DISC approach should provide unique opportunities to link immune cell behavior to phenotype and function in vivo.


Assuntos
Citometria de Fluxo/métodos , Sinapses Imunológicas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Apresentação de Antígeno/imunologia , Movimento Celular/imunologia , Rastreamento de Células , Antígenos H-2/imunologia , Antígenos H-2/metabolismo , Sinapses Imunológicas/metabolismo , Selectina L/imunologia , Selectina L/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo
19.
Immunity ; 35(3): 361-74, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21820334

RESUMO

Engagement of the B cell receptor (BCR) by surface-tethered antigens (Ag) leads to formation of a synapse that promotes Ag uptake for presentation onto major histocompatibility complex class II (MHCII) molecules. We have highlighted the membrane trafficking events and associated molecular mechanisms involved in Ag extraction and processing at the B cell synapse. MHCII-containing lysosomes are recruited to the synapse where they locally undergo exocytosis, allowing synapse acidification and the extracellular release of hydrolases that promote the extraction of the immobilized Ag. Lysosome recruitment and secretion results from the polarization of the microtubule-organizing center (MTOC), which relies on the cell division cycle (Cdc42)-downstream effector, atypical protein kinase C (aPKCζ). aPKCζ is phosphorylated upon BCR engagement, associates to lysosomal vesicles, and is required for their polarized secretion at the B cell synapse. Regulation of B lymphocyte polarity therefore emerges as a central mechanism that couples Ag extraction to Ag processing and presentation.


Assuntos
Apresentação de Antígeno , Linfócitos B/imunologia , Sinapses Imunológicas , Lisossomos , Receptores de Antígenos de Linfócitos B/fisiologia , Animais , Polaridade Celular , Lisossomos/metabolismo , Camundongos , Proteína Quinase C/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Proteína cdc42 de Ligação ao GTP/imunologia
20.
Immunol Rev ; 272(1): 39-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27319341

RESUMO

Antigen presentation refers to the ability of cells to show MHC-associated determinants to T lymphocytes, leading to their activation. MHC class II molecules mainly present peptide-derived antigens that are internalized by endocytosis in antigen-presenting cells (APCs). Here, we describe how the interface between cellular membranes and the cytoskeleton regulates the various steps that lead to the presentation of exogenous antigens on MHC class II molecules in the two main types of APCs: dendritic cells (DCs) and B lymphocytes. This includes antigen uptake, processing, APC migration, and APC-T cell interactions. We further discuss how the interaction between APC-specific molecules and cytoskeleton elements allows the coordination of antigen presentation and cell migration in time and space.


Assuntos
Apresentação de Antígeno , Linfócitos B/imunologia , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Células Dendríticas/imunologia , Linfócitos T/imunologia , Animais , Antígenos/metabolismo , Movimento Celular , Endocitose , Antígenos de Histocompatibilidade/metabolismo , Humanos , Sinapses Imunológicas , Ativação Linfocitária , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA