Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 241(0): 128-149, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36239309

RESUMO

Resonant acoustic mixing (RAM) offers a simple, efficient route for mechanochemical synthesis in the absence of milling media or bulk solvents. Here, we show the use of RAM to conduct the copper-catalysed coupling of sulfonamides and carbodiimides. This coupling was previously reported to take place only by mechanochemical ball milling, while in conventional solution environments it is not efficient, or does not take place at all. The results demonstrate RAM as a suitable methodology to conduct reactions previously accessed only by ball milling and provide a detailed, systematic overview of how the amount of liquid additive, measured by the ratio of liquid volume to weight of reactants (η, in µL mg-1), can affect the course of a mechanochemical reaction and the polymorphic composition of its product. Switching from ball milling to RAM allowed for the discovery of a new polymorph of the model sulfonylguanidine obtained by catalytic coupling of di(cyclohexyl)carbodiimide (DCC) and p-toluenesulfonamide, and the ability to control reaction temperature in RAM enabled in situ control of the polymorphic behaviour of this nascent product. We show that the reaction conversion for a given reaction time does not change monotonically but, instead, achieves a maximum for a well-defined η-value. This "η-sweet-spot" of conversion is herein designated ηmax. The herein explored reactions demonstrate sensitivity to η on the order of 0.01 µL mg-1, which corresponds to an amount of liquid additive below 5 mol% compared to the reactants, and is at least one to two orders of magnitude lower than the η-value typically considered in the design of liquid-assisted ball milling mechanochemical reactions. Such sensitivity suggests that strategies to optimise liquid-assisted mechanochemical reactions should systematically evaluate η-values at increments of 0.01 µL mg-1, or even finer. At η-values other than ηmax the reaction conversion drops off, demonstrating that the same liquid additive can act either as a catalyst or an inhibitor of a mechanochemical reaction, depending on the amount.

2.
Angew Chem Int Ed Engl ; 61(13): e202115030, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35138018

RESUMO

We demonstrate catalytic organic synthesis by Resonant Acoustic Mixing (RAM): a mechanochemical methodology that does not require bulk solvent or milling media. Using as model reactions ruthenium-catalyzed ring-closing metathesis and copper-catalyzed sulfonamide-isocyanate coupling, RAM mechanosynthesis is shown to be faster, operationally simpler than conventional ball-milling, while also providing the first example of a mechanochemical strategy for ruthenium-catalyzed ene-yne metathesis. Reactions by RAM are readily and directly scaled-up without any significant changes in reaction conditions, as shown by the straightforward 200-fold scaling-up of the synthesis of the antidiabetic drug Tolbutamide, from hundreds of milligrams directly to 30 grams.


Assuntos
Rutênio , Acústica , Catálise , Técnicas de Química Sintética , Cobre
3.
Chem Commun (Camb) ; 60(58): 7431-7434, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38938210

RESUMO

The 1967 attempt of structural analysis of the solid-state complex of caffeine and pyrogallol was a pioneering structural investigation in the supramolecular chemistry of caffeine, of what today would easily be considered an archetype of a model pharmaceutical cocrystal. Re-investigating this historically important system demonstrates that this long overlooked complex is most likely a tetrahydrate with a different structure and composition than initially proposed, and provides the crystal structure of the anhydrous cocrystal.


Assuntos
Cafeína , Pirogalol , Cafeína/química , Pirogalol/química , Pirogalol/análogos & derivados , Estrutura Molecular , Cristalização , Modelos Moleculares , Cristalografia por Raios X
4.
Chem Mater ; 35(17): 7189-7195, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37719037

RESUMO

We report the first systematic study experimentally investigating the effect of changes to the divalent metal node on the thermodynamic stability of three-dimensional (3D) and two-dimensional (2D) zeolitic imidazolate frameworks (ZIFs) based on 2-methylimidazolate linkers. In particular, the comparison of enthalpies of formation for materials based on cobalt, copper, and zinc suggests that the use of nodes with larger ionic radius metals leads to the stabilization of the porous sodalite topology with respect to the corresponding higher-density diamondoid (dia)-topology polymorphs. The stabilizing effect of metals is dependent on the framework topology and dimensionality. With previous works pointing to solvent-mediated transformation of 2D ZIF-L structures to their 3D analogues in the sodalite topology, thermodynamic measurements show that contrary to popular belief, the 2D frameworks are energetically stable, thus shedding light on the energetic landscape of these materials. Additionally, the calorimetric data confirm that a change in the dimensionality (3D → 2D) and the presence of structural water within the framework can stabilize structures by as much as 40 kJ·mol-1, making the formation of zinc-based ZIF-L material under such conditions thermodynamically preferred to the formation of both ZIF-8 and its dense, dia-topology polymorph.

5.
J Phys Chem C Nanomater Interfaces ; 127(39): 19520-19526, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37817918

RESUMO

We report the first experimental and theoretical evaluation of the thermodynamic driving force for the reaction of metal-organic framework (MOF) materials with carbon dioxide, leading to a metal-organic carbonate phase. Carbonation upon exposure of MOFs to CO2 is a significant concern for the design and deployment of such materials in carbon storage technologies, and this work shows that the formation of a carbonate material from the popular SOD-topology framework material ZIF-8, as well as its dense-packed dia-topology polymorph, is significantly exothermic. With knowledge of the crystal structure of the starting and final phases in the carbonation reaction, we have also identified periodic density functional theory approaches that most closely reproduce the measured reaction enthalpies. This development now permits the use of advanced theoretical calculations to calculate the driving forces behind the carbonation of zeolitic imidazolate frameworks with reasonable accuracy.

6.
J Phys Chem C Nanomater Interfaces ; 127(36): 17754-17760, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37736295

RESUMO

This study experimentally explores the energetics for the formation of boron-imidazolate frameworks (BIFs), which are synthesized by mechanochemistry. The topologically similar frameworks employ the same tetratopic linker based on tetrakis(imidazolyl)boric acid but differ in the monovalent cation metal nodes. This permits assessment of the stabilizing effect of metal nodes in frameworks with sodalite (SOD) and diamondoid (dia) topologies. The enthalpy of formation from endmembers (metal oxide and linker), which define thermodynamic stability of the structures, has been determined by use of acid solution calorimetry. The results show that heavier metal atoms in the node promote greater energetic stabilization of denser structures. Overall, in BIFs the relation between cation descriptors (ionic radius and electronegativity) and thermodynamic stability depends on framework topology. Thermodynamic stability increases with the metallic character of the cation employed as the metal node, independent of the framework topology. The results suggest unifying aspects for thermodynamic stabilization across MOF systems.

7.
Chem Sci ; 14(27): 7475-7481, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449073

RESUMO

We demonstrate the use of a metal surface to directly catalyse copper-catalysed alkyne-azide click-coupling (CuAAC) reactions under the conditions of Resonant Acoustic Mixing (RAM) - a recently introduced and scalable mechanochemical methodology that uniquely eliminates the need for bulk solvent, as well as milling media. By using a simple copper coil as a catalyst, this work shows that direct mechanocatalysis can occur in an impact-free environment, relying solely on high-speed mixing of reagents against a metal surface, without the need for specially designed milling containers and media. By introducing an experimental setup that enables real-time Raman spectroscopy monitoring of RAM processes, we demonstrate 0th-order reaction kinetics for several selected CuAAC reactions, supporting surface-based catalysis. The herein presented RAM-based direct mechanocatalysis methodology is simple, enables the effective one-pot, two-step synthesis of triazoles via a combination of benzyl azide formation and CuAAC reactions on a wide scope of reagents, provides control over reaction stoichiometry that is herein shown to be superior to that seen in solution or by using more conventional CuCl catalyst, and is applied for simple gram-scale synthesis of the anticonvulsant drug Rufinamide.

8.
Chem Sci ; 12(43): 14499-14506, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34881001

RESUMO

Mechanochemistry enables rapid access to boron imidazolate frameworks (BIFs), including ultralight materials based on Li and Cu(i) nodes, as well as new, previously unexplored systems based on Ag(i) nodes. Compared to solution methods, mechanochemistry is faster, provides materials with improved porosity, and replaces harsh reactants (e.g. n-butylithium) with simpler and safer oxides, carbonates or hydroxides. Periodic density-functional theory (DFT) calculations on polymorphic pairs of BIFs based on Li+, Cu+ and Ag+ nodes reveals that heavy-atom nodes increase the stability of the open SOD-framework relative to the non-porous dia-polymorph.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA