Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Am J Hum Genet ; 111(6): 1184-1205, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38744284

RESUMO

Anoctamins are a family of Ca2+-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+ binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patch-clamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease.


Assuntos
Anoctaminas , Mutação de Sentido Incorreto , Humanos , Anoctaminas/genética , Anoctaminas/metabolismo , Mutação de Sentido Incorreto/genética , Masculino , Feminino , Epilepsia/genética , Criança , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Estudos de Associação Genética , Linhagem , Cálcio/metabolismo , Genes Dominantes , Pré-Escolar , Células HEK293 , Adolescente
2.
J Cell Sci ; 136(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37288813

RESUMO

The axon initial segment (AIS) is a highly specialized neuronal compartment that regulates the generation of action potentials and maintenance of neuronal polarity. Live imaging of the AIS is challenging due to the limited number of suitable labeling methods. To overcome this limitation, we established a novel approach for live labeling of the AIS using unnatural amino acids (UAAs) and click chemistry. The small size of UAAs and the possibility of introducing them virtually anywhere into target proteins make this method particularly suitable for labeling of complex and spatially restricted proteins. Using this approach, we labeled two large AIS components, the 186 kDa isoform of neurofascin (NF186; encoded by Nfasc) and the 260 kDa voltage-gated Na+ channel (NaV1.6, encoded by Scn8a) in primary neurons and performed conventional and super-resolution microscopy. We also studied the localization of epilepsy-causing NaV1.6 variants with a loss-of-function effect. Finally, to improve the efficiency of UAA incorporation, we developed adeno-associated viral (AAV) vectors for click labeling in neurons, an achievement that could be transferred to more complex systems such as organotypic slice cultures, organoids, and animal models.


Assuntos
Segmento Inicial do Axônio , Química Click , Animais , Potenciais de Ação/fisiologia , Aminoácidos/metabolismo , Segmento Inicial do Axônio/metabolismo , Neurônios , Camundongos , Ratos
3.
PLoS Comput Biol ; 19(3): e1010959, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36877742

RESUMO

Missense variants in genes encoding ion channels are associated with a spectrum of severe diseases. Variant effects on biophysical function correlate with clinical features and can be categorized as gain- or loss-of-function. This information enables a timely diagnosis, facilitates precision therapy, and guides prognosis. Functional characterization presents a bottleneck in translational medicine. Machine learning models may be able to rapidly generate supporting evidence by predicting variant functional effects. Here, we describe a multi-task multi-kernel learning framework capable of harmonizing functional results and structural information with clinical phenotypes. This novel approach extends the human phenotype ontology towards kernel-based supervised machine learning. Our gain- or loss-of-function classifier achieves high performance (mean accuracy 0.853 SD 0.016, mean AU-ROC 0.912 SD 0.025), outperforming both conventional baseline and state-of-the-art methods. Performance is robust across different phenotypic similarity measures and largely insensitive to phenotypic noise or sparsity. Localized multi-kernel learning offered biological insight and interpretability by highlighting channels with implicit genotype-phenotype correlations or latent task similarity for downstream analysis.


Assuntos
Canais Iônicos , Aprendizado de Máquina , Humanos , Fenótipo , Canais Iônicos/genética , Estudos de Associação Genética , Aprendizado de Máquina Supervisionado
4.
Brain ; 146(10): 4144-4157, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37165652

RESUMO

Ataxia due to an autosomal dominant intronic GAA repeat expansion in FGF14 [GAA-FGF14 ataxia, spinocerebellar ataxia 27B (SCA27B)] has recently been identified as one of the most common genetic late-onset ataxias. We here aimed to characterize its phenotypic profile, natural history progression, and 4-aminopyridine (4-AP) treatment response. We conducted a multi-modal cohort study of 50 GAA-FGF14 patients, comprising in-depth phenotyping, cross-sectional and longitudinal progression data (up to 7 years), MRI findings, serum neurofilament light (sNfL) levels, neuropathology, and 4-AP treatment response data, including a series of n-of-1 treatment studies. GAA-FGF14 ataxia consistently presented as late-onset [60.0 years (53.5-68.5), median (interquartile range)] pancerebellar syndrome, partly combined with afferent sensory deficits (55%) and dysautonomia (28%). Dysautonomia increased with duration while cognitive impairment remained infrequent, even in advanced stages. Cross-sectional and longitudinal assessments consistently indicated mild progression of ataxia [0.29 Scale for the Assessment and Rating of Ataxia (SARA) points/year], not exceeding a moderate disease severity even in advanced stages (maximum SARA score: 18 points). Functional impairment increased relatively slowly (unilateral mobility aids after 8 years in 50% of patients). Corresponding to slow progression and low extra-cerebellar involvement, sNfL was not increased relative to controls. Concurrent second diseases (including progressive supranuclear palsy neuropathology) represented major individual aggravators of disease severity, constituting important caveats for planning future GAA-FGF14 trials. A treatment response to 4-AP with relevance for everyday living was reported by 86% of treated patients. A series of three prospective n-of-1 treatment experiences with on/off design showed marked reduction in daily symptomatic time and symptom severity on 4-AP. Our study characterizes the phenotypic profile, natural history progression, and 4-AP treatment response of GAA-FGF14 ataxia. It paves the way towards large-scale natural history studies and 4-AP treatment trials in this newly discovered, possibly most frequent, and treatable late-onset ataxia.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Ataxia Cerebelar/genética , Estudos de Coortes , Estudos Transversais , Progressão da Doença , Estudos Prospectivos
5.
Cereb Cortex ; 33(12): 7454-7467, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36977636

RESUMO

The Phospholipid Phosphatase Related 4 gene (PLPPR4,  *607813) encodes the Plasticity-Related-Gene-1 (PRG-1) protein. This cerebral synaptic transmembrane-protein modulates cortical excitatory transmission on glutamatergic neurons. In mice, homozygous Prg-1 deficiency causes juvenile epilepsy. Its epileptogenic potential in humans was unknown. Thus, we screened 18 patients with infantile epileptic spasms syndrome (IESS) and 98 patients with benign familial neonatal/infantile seizures (BFNS/BFIS) for the presence of PLPPR4 variants. A girl with IESS had inherited a PLPPR4-mutation (c.896C > G, NM_014839; p.T299S) from her father and an SCN1A-mutation from her mother (c.1622A > G, NM_006920; p.N541S). The PLPPR4-mutation was located in the third extracellular lysophosphatidic acid-interacting domain and in-utero electroporation (IUE) of the Prg-1p.T300S construct into neurons of Prg-1 knockout embryos demonstrated its inability to rescue the electrophysiological knockout phenotype. Electrophysiology on the recombinant SCN1Ap.N541S channel revealed partial loss-of-function. Another PLPPR4 variant (c.1034C > G, NM_014839; p.R345T) that was shown to result in a loss-of-function aggravated a BFNS/BFIS phenotype and also failed to suppress glutamatergic neurotransmission after IUE. The aggravating effect of Plppr4-haploinsufficiency on epileptogenesis was further verified using the kainate-model of epilepsy: double heterozygous Plppr4-/+|Scn1awt|p.R1648H mice exhibited higher seizure susceptibility than either wild-type, Plppr4-/+, or Scn1awt|p.R1648H littermates. Our study shows that a heterozygous PLPPR4 loss-of-function mutation may have a modifying effect on BFNS/BFIS and on SCN1A-related epilepsy in mice and humans.


Assuntos
Epilepsia , Convulsões , Animais , Feminino , Humanos , Camundongos , Epilepsia/metabolismo , Hipocampo/metabolismo , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Fenótipo , Convulsões/genética , Convulsões/metabolismo
6.
J Neurochem ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37822150

RESUMO

Voltage-gated calcium channels (VGCC) are abundant in the central nervous system and serve a broad spectrum of functions, either directly in cellular excitability or indirectly to regulate Ca2+ homeostasis. Ca2+ ions act as one of the main connections in excitation-transcription coupling, muscle contraction and excitation-exocytosis coupling, including synaptic transmission. In recent years, many genes encoding VGCCs main α or additional auxiliary subunits have been associated with epilepsy. This review sums up the current state of knowledge on disease mechanisms and provides guidance on disease-specific therapies where applicable.

7.
Hum Mol Genet ; 30(23): 2300-2314, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34245260

RESUMO

Here, we report on six unrelated individuals, all presenting with early-onset global developmental delay, associated with impaired motor, speech and cognitive development, partly with developmental epileptic encephalopathy and physical dysmorphisms. All individuals carry heterozygous missense variants of KCND2, which encodes the voltage-gated potassium (Kv) channel α-subunit Kv4.2. The amino acid substitutions associated with the variants, p.(Glu323Lys) (E323K), p.(Pro403Ala) (P403A), p.(Val404Leu) (V404L) and p.(Val404Met) (V404M), affect sites known to be critical for channel gating. To unravel their likely pathogenicity, recombinant mutant channels were studied in the absence and presence of auxiliary ß-subunits under two-electrode voltage clamp in Xenopus oocytes. All channel mutants exhibited slowed and incomplete macroscopic inactivation, and the P403A variant in addition slowed activation. Co-expression of KChIP2 or DPP6 augmented the functional expression of both wild-type and mutant channels; however, the auxiliary ß-subunit-mediated gating modifications differed from wild type and among mutants. To simulate the putative setting in the affected individuals, heteromeric Kv4.2 channels (wild type + mutant) were studied as ternary complexes (containing both KChIP2 and DPP6). In the heteromeric ternary configuration, the E323K variant exhibited only marginal functional alterations compared to homomeric wild-type ternary, compatible with mild loss-of-function. By contrast, the P403A, V404L and V404M variants displayed strong gating impairment in the heteromeric ternary configuration, compatible with loss-of-function or gain-of-function. Our results support the etiological involvement of Kv4.2 channel gating impairment in early-onset monogenic global developmental delay. In addition, they suggest that gain-of-function mechanisms associated with a substitution of V404 increase epileptic seizure susceptibility.


Assuntos
Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/metabolismo , Variação Genética , Ativação do Canal Iônico , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Alelos , Substituição de Aminoácidos , Biomarcadores , Deficiências do Desenvolvimento/diagnóstico , Suscetibilidade a Doenças , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Fenótipo , Subunidades Proteicas , Canais de Potássio Shal/química
8.
Ann Neurol ; 92(1): 75-80, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35438201

RESUMO

Nodding syndrome (NS) is a poorly understood form of childhood-onset epilepsy that is characterized by the pathognomonic ictal phenomenon of repetitive vertical head drops. To evaluate the underlying ictal neurophysiology, ictal EEG features were evaluated in nine participants with confirmed NS from South Sudan, Tanzania, and Uganda and ictal presence of high frequency gamma oscillations on scalp EEG were assessed. Ictal EEG during the head nodding episode predominantly showed generalized slow waves or sharp-and-slow wave complexes followed by electrodecrement. Augmentation of gamma activity (30-70 Hz) was seen during the head nodding episode in all the participants. We confirm that head nodding episodes in persons with NS from the three geographically distinct regions in sub-Saharan Africa share the common features of slow waves with electrodecrement and superimposed gamma activity. ANN NEUROL 2022;92:75-80.


Assuntos
Síndrome do Cabeceio , Eletroencefalografia , Humanos , Síndrome do Cabeceio/diagnóstico , Sudão do Sul , Tanzânia/epidemiologia , Uganda
9.
Brain ; 145(4): 1299-1309, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34633442

RESUMO

A potential link between GABRD encoding the δ subunit of extrasynaptic GABAA receptors and neurodevelopmental disorders has largely been disregarded due to conflicting conclusions from early studies. However, we identified seven heterozygous missense GABRD variants in 10 patients with neurodevelopmental disorders and generalized epilepsy. One variant occurred in two sibs of healthy parents with presumed somatic mosaicism, another segregated with the disease in three affected family members, and the remaining five occurred de novo in sporadic patients. Electrophysiological measurements were used to determine the functional consequence of the seven missense δ subunit variants in receptor combinations of α1ß3δ and α4ß2δ GABAA receptors. This was accompanied by analysis of electroclinical phenotypes of the affected individuals. We determined that five of the seven variants caused altered function of the resulting α1ß3δ and α4ß2δ GABAA receptors. Surprisingly, four of the five variants led to gain-of-function effects, whereas one led to a loss-of-function effect. The stark differences between the gain-of-function and loss-of function effects were mirrored by the clinical phenotypes. Six patients with gain-of-function variants shared common phenotypes: neurodevelopmental disorders with behavioural issues, various degrees of intellectual disability, generalized epilepsy with atypical absences and generalized myoclonic and/or bilateral tonic-clonic seizures. The EEG showed qualitative analogies among the different gain-of-function variant carriers consisting of focal slowing in the occipital regions often preceding irregular generalized epileptiform discharges, with frontal predominance. In contrast, the one patient carrying a loss-of-function variant had normal intelligence and no seizure history, but has a diagnosis of autism spectrum disorder and suffers from elevated internalizing psychiatric symptoms. We hypothesize that increase in tonic GABA-evoked current levels mediated by δ-containing extrasynaptic GABAA receptors lead to abnormal neurotransmission, which represent a novel mechanism for severe neurodevelopmental disorders. In support of this, the electroclinical findings for the gain-of-function GABRD variants resemble the phenotypic spectrum reported in patients with missense SLC6A1 (GABA uptake transporter) variants. This also indicates that the phenomenon of extrasynaptic receptor overactivity is observed in a broader range of patients with neurodevelopmental disorders, because SLC6A1 loss-of-function variants also lead to overactive extrasynaptic δ-containing GABAA receptors. These findings have implications when selecting potential treatment options, as a substantial portion of available antiseizure medication act by enhancing GABAergic function either directly or indirectly, which could exacerbate symptoms in patients with gain-of-function GABRD variants.


Assuntos
Transtorno do Espectro Autista , Epilepsia Generalizada , Epilepsia , Proteínas da Membrana Plasmática de Transporte de GABA , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/genética , Epilepsia/genética , Epilepsia Generalizada/genética , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Mutação com Ganho de Função , Humanos , Transtornos do Neurodesenvolvimento/genética , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Convulsões/genética , Ácido gama-Aminobutírico/metabolismo
10.
Fortschr Neurol Psychiatr ; 91(4): 135-140, 2023 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-36716773

RESUMO

For more than 10 years, research has been conducted on gene therapies for the most severe forms of epilepsy, which until now have proven resistant to treatment. First gene therapies are now in clinical trials for pharmacoresistant focal epilepsies and Dravet syndrome. In this article, we describe how these and many more gene therapies work and what they target.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Humanos , Epilepsia/terapia , Epilepsia/tratamento farmacológico , Epilepsias Mioclônicas/terapia , Epilepsias Mioclônicas/tratamento farmacológico , Anticonvulsivantes/uso terapêutico
11.
Hum Mutat ; 43(9): 1314-1332, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35620985

RESUMO

Pleiotropy is a widespread phenomenon that may increase insight into the etiology of biological and disease traits. Since genome-wide association studies frequently provide information on a single trait only, only univariate pleiotropy detection methods are applicable, with yet unknown comparative performance. Here, we compared five such methods with respect to their ability to detect pleiotropy, including meta-analysis, ASSET, conditional false discovery rate (cFDR), cross-phenotype Bayes (CPBayes), and pleiotropic analysis under the composite null hypothesis (PLACO), by performing extended computer simulations that varied the underlying etiological model for pleiotropy for a pair of traits, including the number of causal variants, degree of traits' overlap, effect sizes as well as trait prevalence, and varying sample sizes. Our results indicate that ASSET provides the best trade-off between power and protection against false positives. We then applied ASSET to a previously published International League Against Epilepsy (ILAE) consortium data set on complex epilepsies, comprising genetic generalized epilepsy and focal epilepsy cases and corresponding controls. We identified a novel candidate locus at 17q21.32 and confirmed locus 2q24.3, previously identified to act pleiotropically on both epilepsy subtypes by a mega-analysis. Functional annotation, tissue-specific expression, and regulatory function analysis as well as Bayesian colocalization analysis corroborated this result, rendering 17q21.32 a worthwhile candidate for follow-up studies on pleiotropy in epilepsies.


Assuntos
Epilepsia , Estudo de Associação Genômica Ampla , Teorema de Bayes , Benchmarking , Epilepsia/diagnóstico , Epilepsia/genética , Pleiotropia Genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único
12.
Genet Med ; 24(10): 2079-2090, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35986737

RESUMO

PURPOSE: Biallelic variants in UCHL1 have been associated with a progressive early-onset neurodegenerative disorder, autosomal recessive spastic paraplegia type 79. In this study, we investigated heterozygous UCHL1 variants on the basis of results from cohort-based burden analyses. METHODS: Gene-burden analyses were performed on exome and genome data of independent cohorts of patients with hereditary ataxia and spastic paraplegia from Germany and the United Kingdom in a total of 3169 patients and 33,141 controls. Clinical data of affected individuals and additional independent families were collected and evaluated. Patients' fibroblasts were used to perform mass spectrometry-based proteomics. RESULTS: UCHL1 was prioritized in both independent cohorts as a candidate gene for an autosomal dominant disorder. We identified a total of 34 cases from 18 unrelated families, carrying 13 heterozygous loss-of-function variants (15 families) and an inframe insertion (3 families). Affected individuals mainly presented with spasticity (24/31), ataxia (28/31), neuropathy (11/21), and optic atrophy (9/17). The mass spectrometry-based proteomics showed approximately 50% reduction of UCHL1 expression in patients' fibroblasts. CONCLUSION: Our bioinformatic analysis, in-depth clinical and genetic workup, and functional studies established haploinsufficiency of UCHL1 as a novel disease mechanism in spastic ataxia.


Assuntos
Ataxia Cerebelar , Atrofia Óptica , Paraplegia Espástica Hereditária , Ataxias Espinocerebelares , Ubiquitina Tiolesterase , Ataxia/genética , Ataxia Cerebelar/genética , Humanos , Mutação com Perda de Função , Espasticidade Muscular/genética , Mutação , Atrofia Óptica/genética , Linhagem , Paraplegia Espástica Hereditária/genética , Ataxias Espinocerebelares/genética , Ubiquitina Tiolesterase/genética
13.
Ann Neurol ; 89(3): 573-586, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33325057

RESUMO

OBJECTIVE: We aimed to characterize the phenotypic spectrum and functional consequences associated with variants in the gene GABRB2, coding for the γ-aminobutyric acid type A (GABAA ) receptor subunit ß2. METHODS: We recruited and systematically evaluated 25 individuals with variants in GABRB2, 17 of whom are newly described and 8 previously reported with additional clinical data. Functional analysis was performed using a Xenopus laevis oocyte model system. RESULTS: Our cohort of 25 individuals from 22 families with variants in GABRB2 demonstrated a range of epilepsy phenotypes from genetic generalized epilepsy to developmental and epileptic encephalopathy. Fifty-eight percent of individuals had pharmacoresistant epilepsy; response to medications targeting the GABAergic pathway was inconsistent. Developmental disability (present in 84%) ranged from mild intellectual disability to severe global disability; movement disorders (present in 44%) included choreoathetosis, dystonia, and ataxia. Disease-associated variants cluster in the extracellular N-terminus and transmembrane domains 1-3, with more severe phenotypes seen in association with variants in transmembrane domains 1 and 2 and the allosteric binding site between transmembrane domains 2 and 3. Functional analysis of 4 variants in transmembrane domains 1 or 2 (p.Ile246Thr, p.Pro252Leu, p.Ile288Ser, p.Val282Ala) revealed strongly reduced amplitudes of GABA-evoked anionic currents. INTERPRETATION: GABRB2-related epilepsy ranges broadly in severity from genetic generalized epilepsy to developmental and epileptic encephalopathies. Developmental disability and movement disorder are key features. The phenotypic spectrum is comparable to other GABAA receptor-encoding genes. Phenotypic severity varies by protein domain. Experimental evidence supports loss of GABAergic inhibition as the mechanism underlying GABRB2-associated neurodevelopmental disorders. ANN NEUROL 2021;89:573-586.


Assuntos
Epilepsia/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Receptores de GABA-A/genética , Adolescente , Adulto , Animais , Ataxia/genética , Ataxia/fisiopatologia , Atetose/genética , Atetose/fisiopatologia , Criança , Pré-Escolar , Coreia/genética , Coreia/fisiopatologia , Estudos de Coortes , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/fisiopatologia , Distonia/genética , Distonia/fisiopatologia , Epilepsia/genética , Feminino , Genótipo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Oócitos , Técnicas de Patch-Clamp , Fenótipo , Domínios Proteicos/genética , Xenopus laevis , Adulto Jovem
14.
Epilepsia ; 63(7): 1643-1657, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35416282

RESUMO

OBJECTIVE: Genetic generalized epilepsy (GGE) is characterized by aberrant neuronal dynamics and subtle structural alterations. We evaluated whether a combination of magnetic and electrical neuronal signals and cortical thickness would provide complementary information about network pathology in GGE. We also investigated whether these imaging phenotypes were present in healthy siblings of the patients to test for genetic influence. METHODS: In this cross-sectional study, we analyzed 5 min of resting state data acquired using electroencephalography (EEG) and magnetoencephalography (MEG) in patients, their siblings, and controls, matched for age and sex. We computed source-reconstructed power and connectivity in six frequency bands (1-40 Hz) and cortical thickness (derived from magnetic resonance imaging). Group differences were assessed using permutation analysis of linear models for each modality separately and jointly for all modalities using a nonparametric combination. RESULTS: Patients with GGE (n = 23) had higher power than controls (n = 35) in all frequencies, with a more posterior focus in MEG than EEG. Connectivity was also increased, particularly in frontotemporal and central regions in theta (strongest in EEG) and low beta frequencies (strongest in MEG), which was eminent in the joint EEG/MEG analysis. EEG showed weaker connectivity differences in higher frequencies, possibly related to drug effects. The inclusion of cortical thickness reinforced group differences in connectivity and power. Siblings (n = 18) had functional and structural patterns intermediate between those of patients and controls. SIGNIFICANCE: EEG detected increased connectivity and power in GGE similar to MEG, but with different spectral sensitivity, highlighting the importance of theta and beta oscillations. Cortical thickness reductions in GGE corresponded to functional imaging patterns. Our multimodal approach extends the understanding of the resting state in GGE and points to genetic underpinnings of the imaging markers studied, providing new insights into the causes and consequences of epilepsy.


Assuntos
Mapeamento Encefálico , Epilepsia Generalizada , Encéfalo , Mapeamento Encefálico/métodos , Estudos Transversais , Eletroencefalografia/métodos , Epilepsia Generalizada/diagnóstico por imagem , Epilepsia Generalizada/genética , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Fenótipo , Irmãos
15.
Epilepsia ; 63(10): 2461-2475, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35716052

RESUMO

The genetic basis of many epilepsies is increasingly understood, giving rise to the possibility of precision treatments tailored to specific genetic etiologies. Despite this, current medical therapy for most epilepsies remains imprecise, aimed primarily at empirical seizure reduction rather than targeting specific disease processes. Intellectual and technological leaps in diagnosis over the past 10 years have not yet translated to routine changes in clinical practice. However, the epilepsy community is poised to make impressive gains in precision therapy, with continued innovation in gene discovery, diagnostic ability, and bioinformatics; increased access to genetic testing and counseling; fuller understanding of natural histories; agility and rigor in preclinical research, including strategic use of emerging model systems; and engagement of an evolving group of stakeholders (including patient advocates, governmental resources, and clinicians and scientists in academia and industry). In each of these areas, we highlight notable examples of recent progress, new or persistent challenges, and future directions. The future of precision medicine for genetic epilepsy looks bright if key opportunities on the horizon can be pursued with strategic and coordinated effort.


Assuntos
Epilepsia , Medicina de Precisão , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/terapia , Testes Genéticos , Humanos , Convulsões/genética , Sugestão
16.
Epilepsia ; 63(6): 1563-1570, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35298028

RESUMO

OBJECTIVE: Levetiracetam (LEV) is an effective antiseizure medicine, but 10%-20% of people treated with LEV report psychiatric side-effects, and up to 1% may have psychotic episodes. Pharmacogenomic predictors of these adverse drug reactions (ADRs) have yet to be identified. We sought to determine the contribution of both common and rare genetic variation to psychiatric and behavioral ADRs associated with LEV. METHODS: This case-control study compared cases of LEV-associated behavioral disorder (n = 149) or psychotic reaction (n = 37) to LEV-exposed people with no history of psychiatric ADRs (n = 920). All samples were of European ancestry. We performed genome-wide association study (GWAS) analysis comparing those with LEV ADRs to controls. We estimated the polygenic risk scores (PRS) for schizophrenia and compared cases with LEV-associated psychotic reaction to controls. Rare variant burden analysis was performed using exome sequence data of cases with psychotic reactions (n = 18) and controls (n = 122). RESULTS: Univariate GWAS found no significant associations with either LEV-associated behavioural disorder or LEV-psychotic reaction. PRS analysis showed that cases of LEV-associated psychotic reaction had an increased PRS for schizophrenia relative to contr ols (p = .0097, estimate = .4886). The rare-variant analysis found no evidence of an increased burden of rare genetic variants in people who had experienced LEV-associated psychotic reaction relative to controls. SIGNIFICANCE: The polygenic burden for schizophrenia is a risk factor for LEV-associated psychotic reaction. To assess the clinical utility of PRS as a predictor, it should be tested in an independent and ideally prospective cohort. Larger sample sizes are required for the identification of significant univariate common genetic signals or rare genetic signals associated with psychiatric LEV ADRs.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Estudo de Associação Genômica Ampla , Anticonvulsivantes/efeitos adversos , Estudos de Casos e Controles , Predisposição Genética para Doença/genética , Humanos , Levetiracetam/efeitos adversos , Farmacogenética , Estudos Prospectivos
17.
J Adv Nurs ; 78(7): 2004-2014, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34837405

RESUMO

AIMS: To find out which variables may be associated with comfort of patients in an epilepsy monitoring unit. DESIGN: Exploratory, quantitative study design. METHODS: Data were collected from October 2018 to November 2019 in Austria and Southern Germany. A total of 267 patients of 10 epilepsy centres completed the Epilepsy Monitoring Unit Comfort Questionnaire which is based on Kolcaba's General Comfort Questionnaire. Secondary data analysis were conducted by using descriptive statistics and an exploratory model building approach, including different linear regression models and several sensitivity analyses. RESULTS: Total comfort scores ranged from 83 to 235 points. Gender, occupation and centre turned out to be possible influential variables. On average, women had a total comfort score 4.69 points higher than men, and retired persons 28.2 points higher than high school students ≥18 years. Comfort scores of younger patients were lower than those of older patients. However, age did not show a statistically significant effect. The same could be observed in marital status and educational levels. CONCLUSION: When implementing comfort measures, nurses must be aware of variables which could influence the intervention negatively. Especially, high school students ≥18 years should be supported by epilepsy specialist nurses, in order to reduce uncertainty, anxiety and discomfort. But, since the identified variables account only for a small proportion of the inter-individual variability in comfort scores, further studies are needed to find out additional relevant aspects and to examine centre-specific effects more closely. IMPACT: Nurses ensure patient comfort during a hospital stay. However, there are variables that may impair the effectiveness of the nursing measures. Our study showed that the experience of comfort was highly individual and could be explained by sociodemographic variables only to a limited extent. Nurses must be aware that additional factors, such as the situation in the individual setting, may be relevant.


Assuntos
Epilepsia , Unidades Hospitalares , Feminino , Humanos , Masculino , Monitorização Fisiológica , Conforto do Paciente , Inquéritos e Questionários
18.
Ann Hum Genet ; 85(5): 186-195, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34111303

RESUMO

PRUNE1 is linked to a wide range of neurodevelopmental and neurodegenerative phenotypes. Multiple pathogenic missense and stop-gain PRUNE1 variants were identified in its DHH and DHHA2 phosphodiesterase domains. Conversely, a single splice alteration was previously reported. We investigated five patients from two unrelated consanguineous Sudanese families with an inherited severe neurodevelopmental disorder using whole-exome sequencing coupled with homozygosity mapping, segregation, and haplotype analysis. We identified a founder haplotype transmitting a homozygous canonical splice-donor variant (NM_021222.3:c.132+2T > C) in intron 2 of PRUNE1 segregated with the phenotype in all the patients. This splice variant possibly results in an in-frame deletion in the DHH domain or premature truncation of the protein. The phenotypes of the affected individuals showed phenotypic similarities characterized by remarkable pyramidal dysfunction and prominent extrapyramidal features (severe dystonia and bradykinesia). In conclusion, we identified a novel founder variant in PRUNE1 and corroborated abnormal splicing events as a disease mechanism in PRUNE1-related disorders. Given the phenotypes' consistency coupled with the founder effect, canonical and cryptic PRUNE1 splice-site variants should be carefully evaluated in patients presenting with prominent dystonia and pyramidal dysfunction.


Assuntos
Distonia/genética , Hipocinesia/genética , Transtornos do Neurodesenvolvimento/genética , Monoéster Fosfórico Hidrolases/genética , Splicing de RNA , Criança , Pré-Escolar , Consanguinidade , Feminino , Haplótipos , Homozigoto , Humanos , Íntrons , Masculino , Linhagem , Fenótipo , Sítios de Splice de RNA , Sudão , Sequenciamento do Exoma
19.
J Neurol Neurosurg Psychiatry ; 92(10): 1044-1052, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33903184

RESUMO

OBJECTIVE: The term 'precision medicine' describes a rational treatment strategy tailored to one person that reverses or modifies the disease pathophysiology. In epilepsy, single case and small cohort reports document nascent precision medicine strategies in specific genetic epilepsies. The aim of this multicentre observational study was to investigate the deeper complexity of precision medicine in epilepsy. METHODS: A systematic survey of patients with epilepsy with a molecular genetic diagnosis was conducted in six tertiary epilepsy centres including children and adults. A standardised questionnaire was used for data collection, including genetic findings and impact on clinical and therapeutic management. RESULTS: We included 293 patients with genetic epilepsies, 137 children and 156 adults, 162 females and 131 males. Treatment changes were undertaken because of the genetic findings in 94 patients (32%), including rational precision medicine treatment and/or a treatment change prompted by the genetic diagnosis, but not directly related to known pathophysiological mechanisms. There was a rational precision medicine treatment for 56 patients (19%), and this was tried in 33/56 (59%) and was successful (ie, >50% seizure reduction) in 10/33 (30%) patients. In 73/293 (25%) patients there was a treatment change prompted by the genetic diagnosis, but not directly related to known pathophysiological mechanisms, and this was successful in 24/73 (33%). SIGNIFICANCE: Our survey of clinical practice in specialised epilepsy centres shows high variability of clinical outcomes following the identification of a genetic cause for an epilepsy. Meaningful change in the treatment paradigm after genetic testing is not yet possible for many people with epilepsy. This systematic survey provides an overview of the current application of precision medicine in the epilepsies, and suggests the adoption of a more considered approach.


Assuntos
Epilepsia/genética , Medicina de Precisão , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Estudos Retrospectivos , Adulto Jovem
20.
Brain ; 143(7): 2119-2138, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32572454

RESUMO

Syntaxin 1B (STX1B) is a core component of the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex that is critical for the exocytosis of synaptic vesicles in the presynapse. SNARE-mediated vesicle fusion is assisted by Munc18-1, which recruits STX1B in the auto-inhibited conformation, while Munc13 catalyses the fast and efficient pairing of helices during SNARE complex formation. Mutations within the STX1B gene are associated with epilepsy. Here we analysed three STX1B mutations by biochemical and electrophysiological means. These three paradigmatic mutations cause epilepsy syndromes of different severity, from benign fever-associated seizures in childhood to severe epileptic encephalopathies. An insertion/deletion (K45/RMCIE, L46M) mutation (STX1BInDel), causing mild epilepsy and located in the early helical Habc domain, leads to an unfolded protein unable to sustain neurotransmission. STX1BG226R, causing epileptic encephalopathies, strongly compromises the interaction with Munc18-1 and reduces expression of both proteins, the size of the readily releasable pool of vesicles, and Ca2+-triggered neurotransmitter release when expressed in STX1-null neurons. The mutation STX1BV216E, also causing epileptic encephalopathies, only slightly diminishes Munc18-1 and Munc13 interactions, but leads to enhanced fusogenicity and increased vesicular release probability, also in STX1-null neurons. Even though the synaptic output remained unchanged in excitatory hippocampal STX1B+/- neurons exogenously expressing STX1B mutants, the manifestation of clear and distinct molecular disease mechanisms by these mutants suggest that certain forms of epilepsies can be conceptualized by assigning mutations to structurally sensitive regions of the STX1B-Munc18-1 interface, translating into distinct neurophysiological phenotypes.


Assuntos
Epilepsia/genética , Epilepsia/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Sintaxina 1/genética , Animais , Genótipo , Camundongos , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA