Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(36): e2302360120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639610

RESUMO

Sarcopenia, the age-related loss of skeletal muscle mass and function, can dramatically impinge on quality of life and mortality. While mitochondrial dysfunction and imbalanced proteostasis are recognized as hallmarks of sarcopenia, the regulatory and functional link between these processes is underappreciated and unresolved. We therefore investigated how mitochondrial proteostasis, a crucial process that coordinates the expression of nuclear- and mitochondrial-encoded mitochondrial proteins with supercomplex formation and respiratory activity, is affected in skeletal muscle aging. Intriguingly, a robust mitochondrial translation impairment was observed in sarcopenic muscle, which is regulated by the peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α) with the estrogen-related receptor α (ERRα). Exercise, a potent inducer of PGC-1α activity, rectifies age-related reduction in mitochondrial translation, in conjunction with quality control pathways. These results highlight the importance of mitochondrial proteostasis in muscle aging, and elucidate regulatory interactions that underlie the powerful benefits of physical activity in this context.


Assuntos
Qualidade de Vida , Sarcopenia , Humanos , Exercício Físico , Proteínas Mitocondriais/genética , Músculo Esquelético
2.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34465622

RESUMO

Plasticity of cells, tissues, and organs is controlled by the coordinated transcription of biological programs. However, the mechanisms orchestrating such context-specific transcriptional networks mediated by the dynamic interplay of transcription factors and coregulators are poorly understood. The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a prototypical master regulator of adaptive transcription in various cell types. We now uncovered a central function of the C-terminal domain of PGC-1α to bind RNAs and assemble multiprotein complexes including proteins that control gene transcription and RNA processing. These interactions are important for PGC-1α recruitment to chromatin in transcriptionally active liquid-like nuclear condensates. Notably, such a compartmentalization of active transcription mediated by liquid-liquid phase separation was observed in mouse and human skeletal muscle, revealing a mechanism by which PGC-1α regulates complex transcriptional networks. These findings provide a broad conceptual framework for context-dependent transcriptional control of phenotypic adaptations in metabolically active tissues.


Assuntos
Núcleo Celular/metabolismo , Regulação da Expressão Gênica/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/fisiologia , RNA/metabolismo , Animais , Linhagem Celular , Cromatina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas
3.
Pharmacol Res ; 154: 104191, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30844535

RESUMO

Sarcopenia, the age-related loss of skeletal muscle mass and function, increases the risk of developing chronic diseases in older individuals and is a strong predictor of disability and death. Because of the ongoing demographic transition, age-related muscle weakness is responsible for an alarming and increasing contribution to health care costs in Western countries. Exercise-based interventions are most successful in preventing the decline in skeletal muscle mass and in preserving or ameliorating functional capacities with increasing age. However, other treatment options are still scarce. In this review, we explore currently applied nutritional and pharmacological approaches to mitigate age-related muscle wasting, and discuss potential future therapeutic avenues.


Assuntos
Sarcopenia/tratamento farmacológico , Envelhecimento , Animais , Humanos , Músculo Esquelético
4.
Physiol Rep ; 11(11): e15701, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280719

RESUMO

Exercise effectively promotes and preserves cardiorespiratory, neuromuscular, metabolic, and cognitive functions throughout life. The molecular mechanisms underlying the beneficial adaptations to exercise training are, however, still poorly understood. To improve the mechanistic study of specific exercise training adaptations, standardized, physiological, and well-characterized training interventions are required. Therefore, we performed a comprehensive interrogation of systemic changes and muscle-specific cellular and molecular adaptations to voluntary low-resistance wheel running (Run) and progressive high-resistance wheel running (RR) in young male mice. Following 10 weeks of training, both groups showed similar improvements in body composition and peak oxygen uptake (V̇O2peak ), as well as elevated mitochondrial proteins and capillarization markers in the M. plantaris. Run mice clearly outperformed RR mice in a forced treadmill running capacity test, while RR mice displayed increased grip strength as well as superior mass gains in the M. soleus, associated with distinct proteomic changes specifying the two paradigms. Thus, even though both training modalities induce overlapping adaptations, Run interventions preferably improve submaximal running performance, while progressive RR is a valid model to study training-induced gains in grip strength and plantar flexor hypertrophy.


Assuntos
Condicionamento Físico Animal , Treinamento Resistido , Humanos , Camundongos , Masculino , Animais , Atividade Motora/fisiologia , Proteômica , Condicionamento Físico Animal/fisiologia , Adaptação Fisiológica/fisiologia , Músculo Esquelético/metabolismo , Resistência Física/fisiologia
5.
J Cachexia Sarcopenia Muscle ; 13(2): 1164-1176, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35191221

RESUMO

BACKGROUND: Interventions to preserve functional capacities at advanced age are becoming increasingly important. So far, exercise provides the only means to counteract age-related decrements in physical performance and muscle function. Unfortunately, the effectiveness of exercise interventions in elderly populations is hampered by reduced acceptance and compliance as well as disuse complications. We therefore studied whether application of interleukin-6 (IL-6), a pleiotropic myokine that is induced by skeletal muscle activity and exerts broad systemic effects in response to exercise, affects physical performance and muscle function alone or in combination with training in aged mice. METHODS: Sedentary old male mice (Sed+Saline, n = 15) were compared with animals that received recombinant IL-6 (rIL-6) in an exercise-mimicking pulsatile manner (Sed+IL-6, n = 16), were trained with a moderate-intensity, low-volume endurance exercise regimen (Ex+Saline, n = 13), or were exposed to a combination of these two interventions (Ex+IL-6, n = 16) for 12 weeks. Before and at the end of the intervention, mice underwent a battery of tests to quantify endurance performance, muscle contractility in situ, motor coordination, and gait and metabolic parameters. RESULTS: Mice exposed to enhanced levels of IL-6 during endurance exercise bouts showed superior improvements in endurance performance (33% more work and 12% greater peak power compared with baseline), fatigue resistance in situ (P = 0.0014 vs. Sed+Saline; P = 0.0199 vs. Sed+IL-6; and P = 0.0342 vs. Ex+Saline), motor coordination (rotarod performance, P = 0.0428), and gait (gait speed, P = 0.0053) following training. Pulsatile rIL-6 treatment in sedentary mice had only marginal effects on glucose tolerance and some gait parameters. No increase in adverse events or mortality related to rIL-6 treatment was observed. CONCLUSIONS: Administration of rIL-6 paired with treadmill running bouts potentiates the adaptive response to a moderate-intensity low-volume endurance exercise regimen in old mice, while being safe and well tolerated.


Assuntos
Interleucina-6 , Condicionamento Físico Animal , Corrida , Animais , Interleucina-6/farmacologia , Masculino , Camundongos , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Resistência Física , Corrida/fisiologia
6.
Nat Commun ; 13(1): 2025, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440545

RESUMO

Preserving skeletal muscle function is essential to maintain life quality at high age. Calorie restriction (CR) potently extends health and lifespan, but is largely unachievable in humans, making "CR mimetics" of great interest. CR targets nutrient-sensing pathways centering on mTORC1. The mTORC1 inhibitor, rapamycin, is considered a potential CR mimetic and is proven to counteract age-related muscle loss. Therefore, we tested whether rapamycin acts via similar mechanisms as CR to slow muscle aging. Here we show that long-term CR and rapamycin unexpectedly display distinct gene expression profiles in geriatric mouse skeletal muscle, despite both benefiting aging muscles. Furthermore, CR improves muscle integrity in mice with nutrient-insensitive, sustained muscle mTORC1 activity and rapamycin provides additive benefits to CR in naturally aging mouse muscles. We conclude that rapamycin and CR exert distinct, compounding effects in aging skeletal muscle, thus opening the possibility of parallel interventions to counteract muscle aging.


Assuntos
Restrição Calórica , Sirolimo , Envelhecimento/fisiologia , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Músculo Esquelético , Sirolimo/farmacologia
7.
Front Physiol ; 12: 709807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456749

RESUMO

Exercise, in the form of endurance or resistance training, leads to specific molecular and cellular adaptions not only in skeletal muscles, but also in many other organs such as the brain, liver, fat or bone. In addition to direct effects of exercise on these organs, the production and release of a plethora of different signaling molecules from skeletal muscle are a centerpiece of systemic plasticity. Most studies have so far focused on the regulation and function of such myokines in acute exercise bouts. In contrast, the secretome of long-term training adaptation remains less well understood, and the contribution of non-myokine factors, including metabolites, enzymes, microRNAs or mitochondrial DNA transported in extracellular vesicles or by other means, is underappreciated. In this review, we therefore provide an overview on the current knowledge of endurance and resistance exercise-induced factors of the skeletal muscle secretome that mediate muscular and systemic adaptations to long-term training. Targeting these factors and leveraging their functions could not only have broad implications for athletic performance, but also for the prevention and therapy in diseased and elderly populations.

8.
Sci Rep ; 10(1): 6578, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313031

RESUMO

Skeletal muscle capillarization is a determining factor in gas and metabolite exchange, while its impairments may contribute to the development of sarcopenia. Studies on the potential of resistance training (RT) to induce angiogenesis in older muscles have been inconclusive, and effects of sequential endurance training (ET) and RT on capillarization are unknown. Healthy older men (66.5 ± 3.8 years) were engaged in either 12 weeks of habitual course observation (HC) followed by 12 weeks of RT (n = 8), or 12 weeks of high-intensity interval training (HIIT) followed by 12 weeks of RT (n = 9). At baseline, following 12 and 24 weeks, m. vastus lateralis biopsies were obtained. (Immuno-)histochemistry was used to assess indices of muscle fiber capillarization, muscle fiber morphology and succinate dehydrogenase (SDH) activity. Single periods of RT and HIIT resulted in similar improvements in capillarization and SDH activity. During RT following HIIT, improved capillarization and SDH activity, as well as muscle fiber morphology remained unchanged. The applied RT and HIIT protocols were thus similarly effective in enhancing capillarization and oxidative enzyme activity and RT effectively preserved HIIT-induced adaptations of these parameters. Hence, both, RT and HIIT, are valid training modalities for older men to improve skeletal muscle vascularization.


Assuntos
Envelhecimento/fisiologia , Exercício Físico , Músculo Esquelético/fisiologia , Treinamento Resistido , Adaptação Fisiológica , Idoso , Envelhecimento/genética , Composição Corporal/fisiologia , Capilares/crescimento & desenvolvimento , Capilares/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fatores de Risco , Sarcopenia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA