Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(2): 138, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38200374

RESUMO

In this study, we introduce a portable low-cost device for in situ gas emission measurement from focused point sources of CO2, such as mofettes. We assess the individual sensors' precision with calibration experiments and perform an independent verification of the system's ability to measure gas flow rates in the range of liters per second. The results from one week of continuous CO2 flow observation from a wet mofette at the Starzach site is presented and correlated with the ambient meteorological dynamics. In the observed period, the gas flow rate of the examined mofette exhibits a dominant cycle of around four seconds that is linked to the gas rising upwards through a water column. We find the examined mofette to have a daily emission of 465 kg ±16 %. Furthermore, two events were observed that increased the flow rate abruptly by around 25 % within only a few minutes and a decaying period of 24 hours. These types of events were previously observed by others at the same site but dismissed as measurement errors. We discuss these events as a hydrogeological phenomenon similar to cold-water geyser eruptions. For meteorological events like the passages of high pressure fronts with steep changes in atmospheric pressure, we do not see a significant correlation between atmospheric parameters and the rate of gas exhalation in our one-week time frame, suggesting that on short timescales the atmospheric pumping effect plays a minor role for wet mofettes at the Starzach site.


Assuntos
Dióxido de Carbono , Monitoramento Ambiental , Atmosfera , Alemanha , Água
2.
Ground Water ; 60(1): 125-136, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448195

RESUMO

Fiber-optic (FO) technology is being used increasingly for measurement methods in a variety of environmental applications. However, FO pressure transducers are rarely used in hydrogeological applications. We review the current state of Fabry-Pérot interferometry-based FO pressure transducers, including their advantages and limitations, as another option for high-resolution pressure- or head-change measurements in conventional or advanced aquifer testing. Resolution and precision specifications of FO transducers meet or exceed commonly used non-FO pressure transducers. Due to their design, FO transducers can be used in small-diameter (inner diameter ≥1/4 inch) and continuous multichannel tubing (CMT), sampling points, multilevel packer systems, and Direct Push-based in situ installations and testing. The small diameter of FO transducers provides logistical advantages-especially for tests with monitoring at many zones in a number of wells and/or CMTs (e.g., no reels, placement just below water level in access tubes vs. within isolated zones, reduced weight and volume, small footprint at single point of data acquisition). Principal limitations are small measurement drift that may become evident for tests longer than a few hours, and higher-than-average cost. We present field examples of FO transducer performance in short-term tests with high consistency of acquired data and higher resolution (i.e., capturing significant hydrologic information) compared with commonly used non-FO transducers. Given the above, including advantageous logistical features, FO transducers can open new experimental possibilities in areas of high-resolution three-dimensional (3D) heterogeneity (flow and transport, remediation, critical zones); 3D fracture networks and fundamental hydromechanical behavior; complex 3D flow and leak detection (mines, dams, repositories, geothermal systems).


Assuntos
Água Subterrânea , Desenho de Equipamento , Tecnologia de Fibra Óptica , Transdutores
3.
Ground Water ; 60(1): 137-144, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34231221

RESUMO

We present a workflow to estimate geostatistical aquifer parameters from pumping test data using the Python package welltestpy. The procedure of pumping test analysis is exemplified for two data sets from the Horkheimer Insel site and from the Lauswiesen site, Germany. The analysis is based on a semi-analytical drawdown solution from the upscaling approach Radial Coarse Graining, which enables to infer log-transmissivity variance and horizontal correlation length, beside mean transmissivity, and storativity, from pumping test data. We estimate these parameters of aquifer heterogeneity from type-curve analysis and determine their sensitivity. This procedure, implemented in welltestpy, is a template for analyzing any pumping test. It goes beyond the possibilities of standard methods, for example, based on Theis' equation, which are limited to mean transmissivity and storativity. A sensitivity study showed the impact of observation well positions on the parameter estimation quality. The insights of this study help to optimize future test setups for geostatistical aquifer analysis and provides guidance for investigating pumping tests with regard to aquifer statistics using the open-source software package welltestpy.


Assuntos
Água Subterrânea , Previsões , Modelos Teóricos , Movimentos da Água , Abastecimento de Água
4.
Environ Sci Pollut Res Int ; 26(16): 15754-15766, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31001772

RESUMO

Traditional site characterization and laboratory testing methods are insufficient to quantify and conceptualize subsurface contaminant source-pathway-receptor heterogeneity issues, as they hamper groundwater risk assessment and water resource management using mathematical modeling. To address these issues, we propose an adaptive observation-based conceptual site modeling framework, which emphasizes the need for the iterative testing of hypotheses centered on specific questions with clearly defined objectives using interdisciplinary tools (including, but not limited to, geology, microbiology, hydrogeology, geophysics, and the chemistry of solute fate and transport). Under this framework, we present a case study aimed at a goal-oriented investigation of the source and occurrence of a groundwater nitrate plume previously identified using chemical concentration data from sparsely distributed, conventional, and regional groundwater monitoring wells. These investigations occurred in stages, with the first comprehensive outcome of cost-efficient, non-invasive surface geophysical surveys localizing subsurface heterogeneities laying the groundwork for collaborative, minimally invasive, direct push-based investigations followed by groundwater chemical and stable isotope analyses for source fingerprinting and bioprocess evaluation. Despite the obvious need for further refinement of the conceptual site model as new data become available, we illustrate that the step-by-step integrative framework was useful for systematic maximization of the strengths of different investigation methodologies. Such frameworks and approaches should be encouraged for successful environmental site characterization, monitoring, and modeling.


Assuntos
Água Subterrânea/química , Nitratos/análise , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Modelos Teóricos
6.
Ground Water ; 54(2): 171-85, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26096272

RESUMO

Hydraulic tomography is an emerging field and modeling method that provides a continuous hydraulic conductivity (K) distribution for an investigated region. Characterization approaches that rely on interpolation between one-dimensional (1D) profiles have limited ability to accurately identify high-K channels, juxtapositions of lenses with high K contrast, and breaches in layers or channels between such profiles. However, locating these features is especially important for groundwater flow and transport modeling, and for design and operation of in situ remediation in complex hydrogeologic environments. We use transient hydraulic tomography to estimate 3D K in a volume of 15-m diameter by 20-m saturated thickness in a highly heterogeneous unconfined alluvial (clay to sand-and-gravel) aquifer with a K range of approximately seven orders of magnitude at an active industrial site in Assemini, Sardinia, Italy. A modified Levenberg-Marquardt algorithm was used for geostatistical inversion to deal with the nonlinear nature of the highly heterogeneous system. The imaging results are validated with pumping tests not used in the tomographic inversion. These tests were conducted from three of five clusters of continuous multichannel tubing (CMTs) installed for observation in the tomographic testing. Locations of high-K continuity and discontinuity, juxtaposition of very high-K and very low-K lenses, and low-K "plugs" are evident in regions of the investigated volume where they likely would not have been identified with interpolation from 1D profiles at the positions of the pumping well and five CMT clusters. Quality assessment methods identified a suspect high-K feature between the tested volume and a lateral boundary of the model.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/análise , Tomografia/métodos , Movimentos da Água , Hidrologia/métodos , Itália , Modelos Teóricos , Tomografia/instrumentação
7.
Ground Water ; 53 Suppl 1: 139-48, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25393211

RESUMO

Numerical and laboratory studies have provided evidence that combining hydraulic tomography with tomographic tracer tests could improve the estimation of hydraulic conductivity compared with using hydraulic data alone. Field demonstrations, however, have been lacking so far, which we attribute to experimental difficulties. In this study, we present a conceptual design and experimental applications of tracer tomography at the field scale using heat as a tracer. In our experimental design, we improve active heat tracer testing by minimizing possible effects of heat losses, buoyancy, viscosity, and changing boundary conditions. We also utilize a cost-effective approach of measuring temperature changes in situ at high resolution. We apply the presented method to the 8 m thick heterogeneous, sandy gravel, alluvial aquifer at the Lauswiesen Hydrogeological Research Site in Tübingen, Germany. Results of our tomographic heat-tracer experiments are in line with earlier work on characterizing the aquifer at the test site. We demonstrate from the experimental perspective that tracer tomography is applicable and suitable at the field scale using heat as a tracer. The experimental results also demonstrate the potential of heat-tracer tomography as a cost-effective means for characterizing aquifer heterogeneity.


Assuntos
Água Subterrânea , Temperatura Alta , Movimentos da Água , Monitoramento Ambiental/métodos , Alemanha , Tomografia/métodos
8.
Environ Sci Pollut Res Int ; 21(15): 9016-27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24737015

RESUMO

Over the past decades, significant efforts have been invested in the development of push-in technology for site characterization and monitoring for geotechnical and environmental purposes and have especially been undertaken in the Netherlands and Germany. These technologies provide the opportunity for faster, cheaper, and collection of more reliable subsurface data. However, to maximize the technology both from a development and implementation point of view, it is necessary to have an overview of the areas suitable for the application of this type of technology. Such an overview is missing and cannot simply be read from existing maps and material. This paper describes the development of a map showing the feasibility or applicability of Direct Push/Cone Penetrometer Technology (DPT/CPT) in Europe which depends on the subsurface and its extremely varying properties throughout Europe. Subsurface penetrability is dependent on a range of factors that have not been mapped directly or can easily be inferred from existing databases, especially the maximum depth reachable would be of interest. Among others, it mainly depends on the geology, the soil mechanical properties, the type of equipment used as well as soil-forming processes. This study starts by looking at different geological databases available at the European scale. Next, a scheme has been developed linking geological properties mapped to geotechnical properties to determine basic penetrability categories. From this, a map of soil penetrability is developed and presented. Validating the output by performing field tests was beyond the scope of this study, but for the country of the Netherlands, this map has been compared against a database containing actual cone penetrometer depth data to look for possible contradictory results that would negate the approach. The map for the largest part of Europe clearly shows that there is a much wider potential for the application of Direct Push Technology than is currently seen. The study also shows that there is a lack of large-scale databases that contain depth-resolved data as well as soil mechanical and physical properties that can be used for engineering purposes in relation to the subsurface.


Assuntos
Mapas como Assunto , Solo , Bases de Dados Factuais , Monitoramento Ambiental , Europa (Continente)
9.
J Contam Hydrol ; 136-137: 131-44, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22784635

RESUMO

Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a poor correlation with the distribution of contaminants; whereas phase images exhibit two main anomalies: low phase shift values (<5 mrad) for locations with high BTEX concentrations, including the occurrence of free-phase product (BTEX concentrations >1.7 g/l), and higher phase values for lower BTEX concentrations. Moreover, the spectral response of the areas with high BTEX concentration and free-phase products reveals a flattened spectrum in the low frequencies (<40 Hz), while areas with lower BTEX concentrations exhibit a response characterized by a frequency peak. The SIP response was modelled using a Debye decomposition to compute images of the median relaxation-time. Consistent with laboratory studies, we observed an increase in the relaxation-time associated with an increase in BTEX concentrations. Measurements were also collected in the time domain (TDIP), revealing imaging results consistent with those obtained for frequency domain (SIP) measurements. Results presented here demonstrate the potential of the SIP imaging method to discriminate source and plume of dissolved contaminants at BTEX contaminated sites.


Assuntos
Monitoramento Ambiental/métodos , Hidrocarbonetos/química , Poluentes Atmosféricos/química , Benzeno/química , Derivados de Benzeno/química , Biodegradação Ambiental , Hidrogenação , Tolueno/química , Xilenos/química
10.
Ground Water ; 47(4): 515-25, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19341370

RESUMO

This paper describes a combined field, laboratory, and numerical study of electromagnetic borehole flowmeter measurements acquired without the use of a packer or skirt to block bypass flow around the flowmeter. The most significant finding is that inflow through the wellbore screen changes the ratio of flow through the flowmeter to wellbore flow. Experiments reveal up to a factor of two differences in this ratio for conditions with and without inflow through the wellbore screen. Standard practice is to assume the ratio is constant. A numerical model has been developed to simulate the effect of inflow on the flowmeter. The model is formulated using momentum conservation within the borehole and around the flowmeter. The model is embedded in the MODFLOW-2000 ground water flow code.


Assuntos
Monitoramento Ambiental/métodos , Movimentos da Água
11.
Ground Water ; 47(4): 536-46, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19341375

RESUMO

Most established methods to characterize aquifer structure and hydraulic conductivities of hydrostratigraphical units are not capable of delivering sufficient information in the spatial resolution that is desired for sophisticated numerical contaminant transport modeling and adapted remediation design. With hydraulic investigation methods based on the direct-push (DP) technology such as DP slug tests, DP injection logging, and the hydraulic profiling tool, it is possible to rapidly delineate hydrogeological structures and estimate their hydraulic conductivity in shallow unconsolidated aquifers without the need for wells. A combined application of these tools was used for the investigation of a contaminated German refinery site and for the setup of hydraulic aquifer models. The quality of DP investigation and the models was evaluated by comparisons of tracer transport simulations using these models and measured breakthroughs of two natural gradient tracer tests. Model scenarios considering the information of all tools together showed good reproduction of the measured breakthroughs, indicating the suitability of the approach and a minor impact of potential technical limitations. Using the DP slug tests alone yielded significantly higher deviations for the determined hydraulic conductivities compared to considering two or three of the tools. Realistic aquifer models developed on basis of such combined DP investigation approaches can help optimize remediation concepts or identify flow regimes for aquifers with a complex structure.


Assuntos
Monitoramento Ambiental/métodos , Modelos Teóricos , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA