Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Adv Exp Med Biol ; 1243: 101-111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32297214

RESUMO

Tumors are stressful environments. As tumors evolve from single mutated cancer cells into invasive malignancies they must overcome various constraints and barriers imposed by a hostile microenvironment. To achieve this, cancer cells recruit and rewire cells in their microenvironment to become pro-tumorigenic. We propose that chaperones are vital players in this process, and that activation of stress responses helps tumors adapt and evolve into aggressive malignancies, by enabling phenotypic plasticity in the tumor microenvironment (TME). In this chapter we will review evidence supporting non-cancer-cell-autonomous activity of chaperones in human patients and mouse models of cancer, discuss the mechanisms by which this non-cell-autonomous activity is mediated and provide an evolutionary perspective on the basis of this phenomenon.


Assuntos
Fatores de Transcrição de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Animais , Carcinogênese , Humanos , Neoplasias/genética , Microambiente Tumoral/genética
2.
Cancer Res ; 83(20): 3354-3367, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37548552

RESUMO

Metastatic cancer is largely incurable and is the main cause of cancer-related deaths. The metastatic microenvironment facilitates formation of metastases. Cancer-associated fibroblasts (CAF) are crucial players in generating a hospitable metastatic niche by mediating an inflammatory microenvironment. Fibroblasts also play a central role in modifying the architecture and stiffness of the extracellular matrix (ECM). Resolving the early changes in the metastatic niche could help identify approaches to inhibit metastatic progression. Here, we demonstrate in mouse models of spontaneous breast cancer pulmonary metastasis that fibrotic changes and rewiring of lung fibroblasts occurred at premetastatic stages, suggesting systemic influence by the primary tumor. Activin A (ActA), a TGFß superfamily member, was secreted from breast tumors and its levels in the blood were highly elevated in tumor-bearing mice. ActA upregulated the expression of profibrotic factors in lung fibroblasts, leading to enhanced collagen deposition in the lung premetastatic niche. ActA signaling was functionally important for lung metastasis, as genetic targeting of ActA in breast cancer cells significantly attenuated lung metastasis and improved survival. Moreover, high levels of ActA in human patients with breast cancer were associated with lung metastatic relapse and poor survival. This study uncovers a novel mechanism by which breast cancer cells systemically rewire the stromal microenvironment in the metastatic niche to facilitate pulmonary metastasis. SIGNIFICANCE: ActA mediates cross-talk between breast cancer cells and cancer-associated fibroblasts in the lung metastatic niche that enhances fibrosis and metastasis, implicating ActA as a potential therapeutic target to inhibit metastatic relapse.

3.
Cancer Res ; 82(2): 278-291, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34666995

RESUMO

Metastasis is the main cause of cancer-related mortality. Despite intense efforts to understand the mechanisms underlying the metastatic process, treatment of metastatic cancer is still challenging. Here we describe a chemotherapy-induced, host-mediated mechanism that promotes remodeling of the extracellular matrix (ECM), ultimately facilitating cancer cell seeding and metastasis. Paclitaxel (PTX) chemotherapy enhanced rapid ECM remodeling and mechanostructural changes in the lungs of tumor-free mice, and the protein expression and activity of the ECM remodeling enzyme lysyl oxidase (LOX) increased in response to PTX. A chimeric mouse model harboring genetic LOX depletion revealed chemotherapy-induced ECM remodeling was mediated by CD8+ T cells expressing LOX. Consistently, adoptive transfer of CD8+ T cells, but not CD4+ T cells or B cells, from PTX-treated mice to naïve immunodeprived mice induced pulmonary ECM remodeling. Lastly, in a clinically relevant metastatic breast carcinoma model, LOX inhibition counteracted the metastasis-promoting, ECM-related effects of PTX. This study highlights the role of immune cells in regulating ECM and metastasis following chemotherapy, suggesting that inhibiting chemotherapy-induced ECM remodeling represents a potential therapeutic strategy for metastatic cancer. SIGNIFICANCE: Chemotherapy induces prometastatic pulmonary ECM remodeling by upregulating LOX in T cells, which can be targeted with LOX inhibitors to suppress metastasis.See related commentary by Kolonin and Woodward, p. 197.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Neoplasias da Mama/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Paclitaxel/efeitos adversos , Transferência Adotiva/métodos , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos/imunologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Células MCF-7 , Neoplasias Mamárias Experimentais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos SCID , Paclitaxel/administração & dosagem , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo
4.
Nat Commun ; 13(1): 6513, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316305

RESUMO

Tumors initiate by mutations in cancer cells, and progress through interactions of the cancer cells with non-malignant cells of the tumor microenvironment. Major players in the tumor microenvironment are cancer-associated fibroblasts (CAFs), which support tumor malignancy, and comprise up to 90% of the tumor mass in pancreatic cancer. CAFs are transcriptionally rewired by cancer cells. Whether this rewiring is differentially affected by different mutations in cancer cells is largely unknown. Here we address this question by dissecting the stromal landscape of BRCA-mutated and BRCA Wild-type pancreatic ductal adenocarcinoma. We comprehensively analyze pancreatic cancer samples from 42 patients, revealing different CAF subtype compositions in germline BRCA-mutated vs. BRCA Wild-type tumors. In particular, we detect an increase in a subset of immune-regulatory clusterin-positive CAFs in BRCA-mutated tumors. Using cancer organoids and mouse models we show that this process is mediated through activation of heat-shock factor 1, the transcriptional regulator of clusterin. Our findings unravel a dimension of stromal heterogeneity influenced by germline mutations in cancer cells, with direct implications for clinical research.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Clusterina , Fatores de Transcrição de Choque Térmico , Neoplasias Pancreáticas , Animais , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/patologia , Clusterina/genética , Clusterina/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/genética , Humanos , Neoplasias Pancreáticas
5.
Elife ; 102021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34169837

RESUMO

Mortality from breast cancer is almost exclusively a result of tumor metastasis, and lungs are one of the main metastatic sites. Cancer-associated fibroblasts are prominent players in the microenvironment of breast cancer. However, their role in the metastatic niche is largely unknown. In this study, we profiled the transcriptional co-evolution of lung fibroblasts isolated from transgenic mice at defined stage-specific time points of metastases formation. Employing multiple knowledge-based platforms of data analysis provided powerful insights on functional and temporal regulation of the transcriptome of fibroblasts. We demonstrate that fibroblasts in lung metastases are transcriptionally dynamic and plastic, and reveal stage-specific gene signatures that imply functional tasks, including extracellular matrix remodeling, stress response, and shaping the inflammatory microenvironment. Furthermore, we identified Myc as a central regulator of fibroblast rewiring and found that stromal upregulation of Myc transcriptional networks is associated with disease progression in human breast cancer.


Assuntos
Fibroblastos/patologia , Neoplasias Pulmonares/secundário , Pulmão/patologia , Transcriptoma , Microambiente Tumoral/genética , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Transgênicos
6.
Cancer Res ; 81(7): 1639-1653, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33547159

RESUMO

Gastric cancer is the third most lethal cancer worldwide, and evaluation of the genomic status of gastric cancer cells has not translated into effective prognostic or therapeutic strategies. We therefore hypothesize that outcomes may depend on the tumor microenvironment (TME), in particular, cancer-associated fibroblasts (CAF). However, very little is known about the role of CAFs in gastric cancer. To address this, we mapped the transcriptional landscape of human gastric cancer stroma by microdissection and RNA sequencing of CAFs from patients with gastric cancer. A stromal gene signature was associated with poor disease outcome, and the transcription factor heat shock factor 1 (HSF1) regulated the signature. HSF1 upregulated inhibin subunit beta A and thrombospondin 2, which were secreted in CAF-derived extracellular vesicles to the TME to promote cancer. Together, our work provides the first transcriptional map of human gastric cancer stroma and highlights HSF1 and its transcriptional targets as potential diagnostic and therapeutic targets in the genomically stable tumor microenvironment. SIGNIFICANCE: This study shows how HSF1 regulates a stromal transcriptional program associated with aggressive gastric cancer and identifies multiple proteins within this program as candidates for therapeutic intervention. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/7/1639/F1.large.jpg.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Vesículas Extracelulares/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Neoplasias Gástricas/patologia , Animais , Fibroblastos Associados a Câncer/patologia , Células Cultivadas , Estudos de Coortes , Progressão da Doença , Vesículas Extracelulares/patologia , Fatores de Transcrição de Choque Térmico/genética , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Invasividade Neoplásica , Fenótipo , Prognóstico , Via Secretória/fisiologia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Análise de Sobrevida , Microambiente Tumoral/fisiologia
7.
Nat Cancer ; 1(7): 692-708, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-35122040

RESUMO

Tumors are supported by cancer-associated fibroblasts (CAFs). CAFs are heterogeneous and carry out distinct cancer-associated functions. Understanding the full repertoire of CAFs and their dynamic changes as tumors evolve could improve the precision of cancer treatment. Here we comprehensively analyze CAFs using index and transcriptional single-cell sorting at several time points along breast tumor progression in mice, uncovering distinct subpopulations. Notably, the transcriptional programs of these subpopulations change over time and in metastases, transitioning from an immunoregulatory program to wound-healing and antigen-presentation programs, indicating that CAFs and their functions are dynamic. Two main CAF subpopulations are also found in human breast tumors, where their ratio is associated with disease outcome across subtypes and is particularly correlated with BRCA mutations in triple-negative breast cancer. These findings indicate that the repertoire of CAF changes over time in breast cancer progression, with direct clinical implications.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias de Mama Triplo Negativas , Animais , Fibroblastos Associados a Câncer/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Proteína A4 de Ligação a Cálcio da Família S100/genética , Neoplasias de Mama Triplo Negativas/genética
8.
Nat Commun ; 11(1): 6245, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288768

RESUMO

In the colon, long-term exposure to chronic inflammation drives colitis-associated colon cancer (CAC) in patients with inflammatory bowel disease. While the causal and clinical links are well established, molecular understanding of how chronic inflammation leads to the development of colon cancer is lacking. Here we deconstruct the evolving microenvironment of CAC by measuring proteomic changes and extracellular matrix (ECM) organization over time in a mouse model of CAC. We detect early changes in ECM structure and composition, and report a crucial role for the transcriptional regulator heat shock factor 1 (HSF1) in orchestrating these events. Loss of HSF1 abrogates ECM assembly by colon fibroblasts in cell-culture, prevents inflammation-induced ECM remodeling in mice and inhibits progression to CAC. Establishing relevance to human disease, we find high activation of stromal HSF1 in CAC patients, and detect the HSF1-dependent proteomic ECM signature in human colorectal cancer. Thus, HSF1-dependent ECM remodeling plays a crucial role in mediating inflammation-driven colon cancer.


Assuntos
Neoplasias Associadas a Colite/metabolismo , Matriz Extracelular/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Linhagem Celular Tumoral , Células Cultivadas , Neoplasias Associadas a Colite/genética , Modelos Animais de Doenças , Fatores de Transcrição de Choque Térmico/genética , Humanos , Espectrometria de Massas/métodos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA