Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 931
Filtrar
1.
Nat Immunol ; 21(1): 42-53, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31768073

RESUMO

Pathogen-associated molecular patterns (PAMPs) have the capacity to couple inflammatory gene expression to changes in macrophage metabolism, both of which influence subsequent inflammatory activities. Similar to their microbial counterparts, several self-encoded damage-associated molecular patterns (DAMPs) induce inflammatory gene expression. However, whether this symmetry in host responses between PAMPs and DAMPs extends to metabolic shifts is unclear. Here, we report that the self-encoded oxidized phospholipid oxPAPC alters the metabolism of macrophages exposed to lipopolysaccharide. While cells activated by lipopolysaccharide rely exclusively on glycolysis, macrophages exposed to oxPAPC also use mitochondrial respiration, feed the Krebs cycle with glutamine, and favor the accumulation of oxaloacetate in the cytoplasm. This metabolite potentiates interleukin-1ß production, resulting in hyperinflammation. Similar metabolic adaptions occur in vivo in hypercholesterolemic mice and human subjects. Drugs that interfere with oxPAPC-driven metabolic changes reduce atherosclerotic plaque formation in mice, thereby underscoring the importance of DAMP-mediated activities in pathophysiological conditions.


Assuntos
Alarminas/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Fosfatidilcolinas/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Glicólise/fisiologia , Hipercolesterolemia/imunologia , Hipercolesterolemia/patologia , Inflamação/prevenção & controle , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Fosforilação Oxidativa , Placa Aterosclerótica/patologia , Placa Aterosclerótica/prevenção & controle
2.
Nature ; 616(7958): 747-754, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046084

RESUMO

Chronic liver disease is a major public health burden worldwide1. Although different aetiologies and mechanisms of liver injury exist, progression of chronic liver disease follows a common pathway of liver inflammation, injury and fibrosis2. Here we examined the association between clonal haematopoiesis of indeterminate potential (CHIP) and chronic liver disease in 214,563 individuals from 4 independent cohorts with whole-exome sequencing data (Framingham Heart Study, Atherosclerosis Risk in Communities Study, UK Biobank and Mass General Brigham Biobank). CHIP was associated with an increased risk of prevalent and incident chronic liver disease (odds ratio = 2.01, 95% confidence interval (95% CI) [1.46, 2.79]; P < 0.001). Individuals with CHIP were more likely to demonstrate liver inflammation and fibrosis detectable by magnetic resonance imaging compared to those without CHIP (odds ratio = 1.74, 95% CI [1.16, 2.60]; P = 0.007). To assess potential causality, Mendelian randomization analyses showed that genetic predisposition to CHIP was associated with a greater risk of chronic liver disease (odds ratio = 2.37, 95% CI [1.57, 3.6]; P < 0.001). In a dietary model of non-alcoholic steatohepatitis, mice transplanted with Tet2-deficient haematopoietic cells demonstrated more severe liver inflammation and fibrosis. These effects were mediated by the NLRP3 inflammasome and increased levels of expression of downstream inflammatory cytokines in Tet2-deficient macrophages. In summary, clonal haematopoiesis is associated with an elevated risk of liver inflammation and chronic liver disease progression through an aberrant inflammatory response.


Assuntos
Hematopoiese Clonal , Suscetibilidade a Doenças , Hepatite , Cirrose Hepática , Animais , Camundongos , Hematopoiese Clonal/genética , Hepatite/genética , Inflamação/genética , Cirrose Hepática/genética , Hepatopatia Gordurosa não Alcoólica/genética , Razão de Chances , Progressão da Doença
3.
EMBO J ; 42(24): e113590, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38073509

RESUMO

Cells secrete extracellular vesicles (EVs) and non-vesicular extracellular (nano)particles (NVEPs or ENPs) that may play a role in intercellular communication. Tumor-derived EVs have been proposed to induce immune priming of antigen presenting cells or to be immuno-suppressive agents. We suspect that such disparate functions are due to variable compositions in EV subtypes and ENPs. We aimed to characterize the array of secreted EVs and ENPs of murine tumor cell lines. Unexpectedly, we identified virus-like particles (VLPs) from endogenous murine leukemia virus in preparations of EVs produced by many tumor cells. We established a protocol to separate small EVs from VLPs and ENPs. We compared their protein composition and analyzed their functional interaction with target dendritic cells. ENPs were poorly captured and did not affect dendritic cells. Small EVs specifically induced dendritic cell death. A mixed large/dense EV/VLP preparation was most efficient to induce dendritic cell maturation and antigen presentation. Our results call for systematic re-evaluation of the respective proportions and functions of non-viral EVs and VLPs produced by murine tumors and their contribution to tumor progression.


Assuntos
Retrovirus Endógenos , Vesículas Extracelulares , Neoplasias , Animais , Camundongos , Vesículas Extracelulares/metabolismo , Linhagem Celular Tumoral , Diferenciação Celular , Células Dendríticas , Neoplasias/metabolismo
4.
Hum Mol Genet ; 33(8): 733-738, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38215789

RESUMO

OBJECTIVE: This study aims to identify BMI-associated genes by integrating aggregated summary information from different omics data. METHODS: We conducted a meta-analysis to leverage information from a genome-wide association study (n = 339 224), a transcriptome-wide association study (n = 5619), and an epigenome-wide association study (n = 3743). We prioritized the significant genes with a machine learning-based method, netWAS, which borrows information from adipose tissue-specific interaction networks. We also used the brain-specific network in netWAS to investigate genes potentially involved in brain-adipose interaction. RESULTS: We identified 195 genes that were significantly associated with BMI through meta-analysis. The netWAS analysis narrowed down the list to 21 genes in adipose tissue. Among these 21 genes, six genes, including FUS, STX4, CCNT2, FUBP1, NDUFS3, and RAPSN, were not reported to be BMI-associated in PubMed or GWAS Catalog. We also identified 11 genes that were significantly associated with BMI in both adipose and whole brain tissues. CONCLUSION: This study integrated three types of omics data and identified a group of genes that have not previously been reported to be associated with BMI. This strategy could provide new insights for future studies to identify molecular mechanisms contributing to BMI regulation.


Assuntos
Estudo de Associação Genômica Ampla , Multiômica , Humanos , Índice de Massa Corporal , Estudo de Associação Genômica Ampla/métodos , Transcriptoma , Obesidade/genética , Ciclina T/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a RNA/genética
5.
Am J Hum Genet ; 110(10): 1704-1717, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802043

RESUMO

Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions in lipid metabolism. Large-scale whole-genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess more associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with measurement of blood lipids and lipoproteins (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare-variant aggregate association tests using the STAAR (variant-set test for association using annotation information) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare-coding variants in nearby protein-coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500-kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variation and rare protein-coding variation at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNAs.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Estudo de Associação Genômica Ampla , Medicina de Precisão , Sequenciamento Completo do Genoma/métodos , Lipídeos/genética , Polimorfismo de Nucleotídeo Único/genética
6.
Annu Rev Cell Dev Biol ; 28: 113-35, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22804576

RESUMO

Cell size varies widely among different organisms as well as within the same organism in different tissue types and during development, which places variable metabolic and functional demands on organelles and internal structures. A fundamental question is how essential subcellular components scale to accommodate cell size differences. Nuclear transport has emerged as a conserved means of scaling nuclear size. A meiotic spindle scaling factor has been identified as the microtubule-severing protein katanin, which is differentially regulated by phosphorylation in two different-sized frog species. Anaphase mechanisms and levels of chromatin compaction both act to coordinate cell size with spindle and chromosome dimensions to ensure accurate genome distribution during cell division. Scaling relationships and mechanisms for many membrane-bound compartments remain largely unknown and are complicated by their heterogeneity and dynamic nature. This review summarizes cell and organelle size relationships and the experimental approaches that have elucidated mechanisms of intracellular scaling.


Assuntos
Tamanho Celular , Animais , Divisão Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Tamanho do Núcleo Celular , Cromatina/metabolismo , Cromatina/ultraestrutura , Humanos , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Leveduras/citologia , Leveduras/fisiologia , Leveduras/ultraestrutura
7.
Semin Cell Dev Biol ; 133: 53-64, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35148938

RESUMO

During early embryogenesis, as cells divide in the developing embryo, the size of intracellular organelles generally decreases to scale with the decrease in overall cell size. Organelle size scaling is thought to be important to establish and maintain proper cellular function, and defective scaling may lead to impaired development and disease. However, how the cell regulates organelle size and organization are largely unanswered questions. In this review, we summarize the process of size scaling at both the cell and organelle levels and discuss recently discovered mechanisms that regulate this process during early embryogenesis. In addition, we describe how some recently developed techniques and Xenopus as an animal model can be used to investigate the underlying mechanisms of size regulation and to uncover the significance of proper organelle size scaling and organization.


Assuntos
Organelas , Animais , Tamanho das Organelas , Xenopus laevis , Tamanho Celular
8.
Hum Mol Genet ; 32(4): 649-658, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36130209

RESUMO

BACKGROUND: The relations of alcohol consumption and gene expression remain to be elucidated. MATERIALS AND METHODS: We examined cross-sectional associations between alcohol consumption and whole blood derived gene expression levels and between alcohol-associated genes and obesity, hypertension, and diabetes in 5531 Framingham Heart Study (FHS) participants. RESULTS: We identified 25 alcohol-associated genes. We further showed cross-sectional associations of 16 alcohol-associated genes with obesity, nine genes with hypertension, and eight genes with diabetes at P < 0.002. For example, we observed decreased expression of PROK2 (ß = -0.0018; 95%CI: -0.0021, -0.0007; P = 6.5e - 5) and PAX5 (ß = -0.0014; 95%CI: -0.0021, -0.0007; P = 6.5e - 5) per 1 g/day increase in alcohol consumption. Consistent with our previous observation on the inverse association of alcohol consumption with obesity and positive association of alcohol consumption with hypertension, we found that PROK2 was positively associated with obesity (OR = 1.42; 95%CI: 1.17, 1.72; P = 4.5e - 4) and PAX5 was negatively associated with hypertension (OR = 0.73; 95%CI: 0.59, 0.89; P = 1.6e - 3). We also observed that alcohol consumption was positively associated with expression of ABCA13 (ß = 0.0012; 95%CI: 0.0007, 0.0017; P = 1.3e - 6) and ABCA13 was positively associated with diabetes (OR = 2.57; 95%CI: 1.73, 3.84; P = 3.5e - 06); this finding, however, was inconsistent with our observation of an inverse association between alcohol consumption and diabetes. CONCLUSIONS: We showed strong cross-sectional associations between alcohol consumption and expression levels of 25 genes in FHS participants. Nonetheless, complex relationships exist between alcohol-associated genes and CVD risk factors.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Hipertensão , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/complicações , Transcriptoma , Estudos Transversais , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/genética , Hipertensão/genética , Fatores de Risco , Obesidade/epidemiologia , Obesidade/genética , Obesidade/complicações , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/genética , Estudos Longitudinais , Biomarcadores
9.
Hum Mol Genet ; 32(6): 1048-1060, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36444934

RESUMO

Diabetic kidney disease (DKD) is recognized as an important public health challenge. However, its genomic mechanisms are poorly understood. To identify rare variants for DKD, we conducted a whole-exome sequencing (WES) study leveraging large cohorts well-phenotyped for chronic kidney disease and diabetes. Our two-stage WES study included 4372 European and African ancestry participants from the Chronic Renal Insufficiency Cohort and Atherosclerosis Risk in Communities studies (stage 1) and 11 487 multi-ancestry Trans-Omics for Precision Medicine participants (stage 2). Generalized linear mixed models, which accounted for genetic relatedness and adjusted for age, sex and ancestry, were used to test associations between single variants and DKD. Gene-based aggregate rare variant analyses were conducted using an optimized sequence kernel association test implemented within our mixed model framework. We identified four novel exome-wide significant DKD-related loci through initiating diabetes. In single-variant analyses, participants carrying a rare, in-frame insertion in the DIS3L2 gene (rs141560952) exhibited a 193-fold increased odds [95% confidence interval (CI): 33.6, 1105] of DKD compared with noncarriers (P = 3.59 × 10-9). Likewise, each copy of a low-frequency KRT6B splice-site variant (rs425827) conferred a 5.31-fold higher odds (95% CI: 3.06, 9.21) of DKD (P = 2.72 × 10-9). Aggregate gene-based analyses further identified ERAP2 (P = 4.03 × 10-8) and NPEPPS (P = 1.51 × 10-7), which are both expressed in the kidney and implicated in renin-angiotensin-aldosterone system modulated immune response. In the largest WES study of DKD, we identified novel rare variant loci attaining exome-wide significance. These findings provide new insights into the molecular mechanisms underlying DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Insuficiência Renal Crônica , Humanos , Aminopeptidases , Nefropatias Diabéticas/genética , Sequenciamento do Exoma , Rim , Insuficiência Renal Crônica/genética
10.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364309

RESUMO

MOTIVATION: Estimating the individual inbreeding coefficient and pairwise kinship is an important problem in human genetics (e.g. in disease mapping) and in animal and plant genetics (e.g. inbreeding design). Existing methods, such as sample correlation-based genetic relationship matrix, KING, and UKin, are either biased, or not able to estimate inbreeding coefficients, or produce a large proportion of negative estimates that are difficult to interpret. This limitation of existing methods is partly due to failure to explicitly model inbreeding. Since all humans are inbred to various degrees by virtue of shared ancestries, it is prudent to account for inbreeding when inferring kinship between individuals. RESULTS: We present "Kindred," an approach that estimates inbreeding and kinship by modeling latent identity-by-descent states that accounts for all possible allele sharing-including inbreeding-between two individuals. Kindred used non-negative least squares method to fit the model, which not only increases computation efficiency compared to the maximum likelihood method, but also guarantees non-negativity of the kinship estimates. Through simulation, we demonstrate the high accuracy and non-negativity of kinship estimates by Kindred. By selecting a subset of SNPs that are similar in allele frequencies across different continental populations, Kindred can accurately estimate kinship between admixed samples. In addition, we demonstrate that the realized kinship matrix estimated by Kindred is effective in reducing genomic control values via linear mixed model in genome-wide association studies. Finally, we demonstrate that Kindred produces sensible heritability estimates on an Australian height dataset. AVAILABILITY AND IMPLEMENTATION: Kindred is implemented in C with multi-threading. It takes vcf file or stream as input and works seamlessly with bcftools. Kindred is freely available at https://github.com/haplotype/kindred.


Assuntos
Estudo de Associação Genômica Ampla , Endogamia , Animais , Humanos , Austrália , Genoma , Frequência do Gene , Linhagem
11.
Mol Psychiatry ; 29(2): 505-517, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167865

RESUMO

Mitochondrial DNA single nucleotide polymorphisms (mtSNPs) have been associated with a reduced risk of developing Parkinson's disease (PD), yet the underlying mechanisms remain elusive. In this study, we investigate the functional role of a PD-associated mtSNP that impacts the mitochondrial-derived peptide (MDP) Small Humanin-like Peptide 2 (SHLP2). We identify m.2158 T > C, a mtSNP associated with reduced PD risk, within the small open reading frame encoding SHLP2. This mtSNP results in an alternative form of SHLP2 (lysine 4 replaced with arginine; K4R). Using targeted mass spectrometry, we detect specific tryptic fragments of SHLP2 in neuronal cells and demonstrate its binding to mitochondrial complex 1. Notably, we observe that the K4R variant, associated with reduced PD risk, exhibits increased stability compared to WT SHLP2. Additionally, both WT and K4R SHLP2 show enhanced protection against mitochondrial dysfunction in in vitro experiments and confer protection against a PD-inducing toxin, a mitochondrial complex 1 inhibitor, in a mouse model. This study sheds light on the functional consequences of the m.2158 T > C mtSNP on SHLP2 and provides insights into the potential mechanisms by which this mtSNP may reduce the risk of PD.


Assuntos
Mitocôndrias , Doença de Parkinson , Polimorfismo de Nucleotídeo Único , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Animais , Camundongos , Humanos , Polimorfismo de Nucleotídeo Único/genética , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , Fatores de Proteção , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Modelos Animais de Doenças , Masculino , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular
12.
Cell ; 143(2): 288-98, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20946986

RESUMO

The size of the nucleus varies among different cell types, species, and disease states, but mechanisms of nuclear size regulation are poorly understood. We investigated nuclear scaling in the pseudotetraploid frog Xenopus laevis and its smaller diploid relative Xenopus tropicalis, which contains smaller cells and nuclei. Nuclear scaling was recapitulated in vitro using egg extracts, demonstrating that titratable cytoplasmic factors determine nuclear size to a greater extent than DNA content. Nuclear import rates correlated with nuclear size, and varying the concentrations of two transport factors, importin α and Ntf2, was sufficient to account for nuclear scaling between the two species. Both factors modulated lamin B3 import, with importin α increasing overall import rates and Ntf2 reducing import based on cargo size. Importin α also contributes to nuclear size changes during early X. laevis development. Thus, nuclear transport mechanisms are physiological regulators of both interspecies and developmental nuclear scaling.


Assuntos
Núcleo Celular , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Xenopus/metabolismo , alfa Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Lamina Tipo B/metabolismo , Xenopus/embriologia , Xenopus laevis/embriologia
13.
Ann Intern Med ; 177(1): 39-49, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163367

RESUMO

BACKGROUND: Heart failure (HF) is a complex clinical syndrome with high mortality. Current risk stratification approaches lack precision. High-throughput proteomics could improve risk prediction. Its use in clinical practice to guide the management of patients with HF depends on validation and evidence of clinical benefit. OBJECTIVE: To develop and validate a protein risk score for mortality in patients with HF. DESIGN: Community-based cohort. SETTING: Southeast Minnesota. PARTICIPANTS: Patients with HF enrolled between 2003 and 2012 and followed through 2021. MEASUREMENTS: A total of 7289 plasma proteins in 1351 patients with HF were measured using the SomaScan Assay (SomaLogic). A protein risk score was derived using least absolute shrinkage and selection operator regression and temporal validation in patients enrolled between 2003 and 2007 (development cohort) and 2008 and 2012 (validation cohort). Multivariable Cox regression was used to examine the association between the protein risk score and mortality. The performance of the protein risk score to predict 5-year mortality risk was assessed using calibration plots, decision curves, and relative utility analyses and compared with a clinical model, including the Meta-Analysis Global Group in Chronic Heart Failure mortality risk score and N-terminal pro-B-type natriuretic peptide. RESULTS: The development (n = 855; median age, 78 years; 50% women; 29% with ejection fraction <40%) and validation cohorts (n = 496; median age, 76 years; 45% women; 33% with ejection fraction <40%) were mostly similar. In the development cohort, 38 unique proteins were selected for the protein risk score. Independent of ejection fraction, the protein risk score demonstrated good calibration, reclassified mortality risk particularly at the extremes of the risk distribution, and showed greater clinical utility compared with the clinical model. LIMITATION: Participants were predominantly of European ancestry, potentially limiting the generalizability of the findings to different patient populations. CONCLUSION: Validation of the protein risk score demonstrated good calibration and evidence of predicted benefits to stratify the risk for death in HF superior to that of clinical methods. Further studies are needed to prospectively evaluate the score's performance in diverse populations and determine risk thresholds for interventions. PRIMARY FUNDING SOURCE: Division of Intramural Research at the National Heart, Lung, and Blood Institute of the National Institutes of Health.


Assuntos
Insuficiência Cardíaca , Humanos , Feminino , Idoso , Masculino , Estudos de Coortes , Medição de Risco/métodos , Fatores de Risco , Doença Crônica , Prognóstico
14.
Hum Mol Genet ; 31(7): 1171-1182, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34788810

RESUMO

Carotid intima media thickness (cIMT) is a biomarker of subclinical atherosclerosis and a predictor of future cardiovascular events. Identifying associations between gene expression levels and cIMT may provide insight to atherosclerosis etiology. Here, we use two approaches to identify associations between mRNA levels and cIMT: differential gene expression analysis in whole blood and S-PrediXcan. We used microarrays to measure genome-wide whole blood mRNA levels of 5647 European individuals from four studies. We examined the association of mRNA levels with cIMT adjusted for various potential confounders. Significant associations were tested for replication in three studies totaling 3943 participants. Next, we applied S-PrediXcan to summary statistics from a cIMT genome-wide association study (GWAS) of 71 128 individuals to estimate the association between genetically determined mRNA levels and cIMT and replicated these analyses using S-PrediXcan on an independent GWAS on cIMT that included 22 179 individuals from the UK Biobank. mRNA levels of TNFAIP3, CEBPD and METRNL were inversely associated with cIMT, but these associations were not significant in the replication analysis. S-PrediXcan identified associations between cIMT and genetically determined mRNA levels for 36 genes, of which six were significant in the replication analysis, including TLN2, which had not been previously reported for cIMT. There was weak correlation between our results using differential gene expression analysis and S-PrediXcan. Differential expression analysis and S-PrediXcan represent complementary approaches for the discovery of associations between phenotypes and gene expression. Using these approaches, we prioritize TNFAIP3, CEBPD, METRNL and TLN2 as new candidate genes whose differential expression might modulate cIMT.


Assuntos
Aterosclerose , Espessura Intima-Media Carotídea , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Fatores de Risco
15.
J Cell Sci ; 135(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35665815

RESUMO

Nuclear shape influences cell migration, gene expression and cell cycle progression, and is altered in disease states like laminopathies and cancer. What factors and forces determine nuclear shape? We find that nuclei assembled in Xenopus egg extracts in the presence of dynamic F-actin exhibit a striking bilobed nuclear morphology with distinct membrane compositions in the two lobes and accumulation of F-actin at the inner nuclear envelope. The addition of Lamin A (encoded by lmna), which is absent from Xenopus eggs, results in rounder nuclei, suggesting that opposing nuclear F-actin and Lamin A forces contribute to the regulation of nuclear shape. Nuclear F-actin also promotes altered nuclear shape in Lamin A-knockdown HeLa cells and, in both systems, abnormal nuclear shape is driven by formins and not Arp2/3 or myosin. Although the underlying mechanisms might differ in Xenopus and HeLa cells, we propose that nuclear F-actin filaments nucleated by formins impart outward forces that lead to altered nuclear morphology unless Lamin A is present. Targeting nuclear actin dynamics might represent a novel approach to rescuing disease-associated defects in nuclear shape.


Assuntos
Actinas , Lamina Tipo A , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Núcleo Celular/metabolismo , Forminas/metabolismo , Células HeLa , Humanos , Lamina Tipo A/metabolismo , Membrana Nuclear/metabolismo , Xenopus laevis
16.
BMC Med ; 22(1): 34, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273315

RESUMO

BACKGROUND: Heart failure (HF) is a complex clinical syndrome with persistently high mortality. High-throughput proteomic technologies offer new opportunities to improve HF risk stratification, but their contribution remains to be clearly defined. We aimed to systematically review prognostic studies using high-throughput proteomics to identify protein signatures associated with HF mortality. METHODS: We searched four databases and two clinical trial registries for articles published from 2012 to 2023. HF proteomics studies measuring high numbers of proteins using aptamer or antibody-based affinity platforms on human plasma or serum with outcomes of all-cause or cardiovascular death were included. Two reviewers independently screened articles, extracted data, and assessed the risk of bias. A third reviewer resolved conflicts. We assessed the risk of bias using the Risk Of Bias In Non-randomized Studies-of Exposure tool. RESULTS: Out of 5131 unique articles identified, nine articles were included in the review. The nine studies were observational; three used the aptamer platform, and six used the antibody platform. We found considerable heterogeneity across studies in measurement panels, HF definitions, ejection fraction categorization, follow-up duration, and outcome definitions, and a lack of risk estimates for most protein associations. Hence, we proceeded with a systematic review rather than a meta-analysis. In two comparable aptamer studies in patients with HF with reduced ejection fraction, 21 proteins were identified in common for the association with all-cause death. Among these, one protein, WAP four-disulfide core domain protein 2 was also reported in an antibody study on HFrEF and for the association with CV death. We proposed standardized reporting criteria to facilitate the interpretation of future studies. CONCLUSIONS: In this systematic review of nine studies evaluating the association of proteomics with mortality in HF, we identified a limited number of proteins common across several studies. Heterogeneity across studies compromised drawing broad inferences, underscoring the importance of standardized approaches to reporting.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Insuficiência Cardíaca/diagnóstico , Proteômica , Volume Sistólico
17.
J Card Fail ; 30(3): 513-515, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37979670

RESUMO

BACKGROUND: Infertility has been shown to be associated with a greater risk of incident heart failure with preserved ejection fraction. We studied the association of infertility with subclinical markers of heart failure with preserved ejection fraction, including echocardiographic signs of cardiac remodeling and cardiac biomarkers. METHODS AND RESULTS: A history of infertility was ascertained in 2002 women enrolled in the Framingham Heart Study. We examined the association of infertility with echocardiographic measures and cardiac biomarkers with multivariable-adjusted linear regression models. Among 2002 women (mean age 40.84 ± 9.71 years), 285 (14%) reported a history of infertility. Infertility was associated with a greater E/e' ratio (ß = 0.120, standard error 0.057, P = .04), even after adjustment for common confounders. Infertility was not associated with other echocardiographic measures or cardiac biomarkers. CONCLUSIONS: Infertility was associated with a greater E/e' ratio, a marker of diastolic dysfunction that may signal earlier subclinical cardiac remodeling in women with infertility.


Assuntos
Insuficiência Cardíaca , Infertilidade , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Volume Sistólico , Função Ventricular Esquerda , Remodelação Ventricular , Biomarcadores , Estudos Longitudinais
18.
Circ Res ; 131(9): 731-747, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36169218

RESUMO

BACKGROUND: SH2B3 (SH2B adaptor protein 3) is an adaptor protein that negatively regulates cytokine signaling and cell proliferation. A common missense single nucleotide polymorphism in SH2B3 (rs3184504) results in substitution of tryptophan (Trp) for arginine (Arg) at amino acid 262 and is a top association signal for hypertension in human genome-wide association studies. Whether this variant is causal for hypertension, and if so, the mechanism by which it impacts pathogenesis is unknown. METHODS: We used CRISPR-Cas9 technology to create mice homozygous for the major (Arg/Arg) and minor (Trp/Trp) alleles of this SH2B3 polymorphism. Mice underwent angiotensin II (Ang II) infusion to evaluate differences in blood pressure (BP) elevation and end-organ damage including albuminuria and renal fibrosis. Cytokine production and Stat4 phosphorylation was also assessed in Arg/Arg and Trp/Trp T cells. RESULTS: Trp/Trp mice exhibit 10 mmHg higher systolic BP during chronic Ang II infusion compared to Arg/Arg controls. Renal injury and perivascular fibrosis are exacerbated in Trp/Trp mice compared to Arg/Arg controls following Ang II infusion. Renal and ex vivo stimulated splenic CD8+ T cells from Ang II-infused Trp/Trp mice produce significantly more interferon gamma (IFNg) compared to Arg/Arg controls. Interleukin-12 (IL-12)-induced IFNg production is greater in Trp/Trp compared to Arg/Arg CD8+ T cells. In addition, IL-12 enhances Stat4 phosphorylation to a greater degree in Trp/Trp compared to Arg/Arg CD8+ T cells, suggesting that Trp-encoding SH2B3 exhibits less negative regulation of IL-12 signaling to promote IFNg production. Finally, we demonstrated that a multi-SNP model genetically predicting increased SH2B3 expression in lymphocytes is inversely associated with hypertension and hypertensive chronic kidney disease in humans.. CONCLUSIONS: Taken together, these results suggest that the Trp encoding allele of rs3184504 is causal for BP elevation and renal dysfunction, in part through loss of SH2B3-mediated repression of T cell IL-12 signaling leading to enhanced IFNg production.


Assuntos
Hipertensão Renal , Hipertensão , Proteínas Adaptadoras de Transdução de Sinal , Angiotensina II/metabolismo , Angiotensina II/toxicidade , Animais , Arginina/efeitos adversos , Arginina/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fibrose , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/metabolismo , Hipertensão Renal/metabolismo , Interferon gama/metabolismo , Interleucina-12/efeitos adversos , Interleucina-12/metabolismo , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Triptofano
19.
Circ Res ; 131(2): e51-e69, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35658476

RESUMO

BACKGROUND: Epigenetic dysregulation has been proposed as a key mechanism for arsenic-related cardiovascular disease (CVD). We evaluated differentially methylated positions (DMPs) as potential mediators on the association between arsenic and CVD. METHODS: Blood DNA methylation was measured in 2321 participants (mean age 56.2, 58.6% women) of the Strong Heart Study, a prospective cohort of American Indians. Urinary arsenic species were measured using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. We identified DMPs that are potential mediators between arsenic and CVD. In a cross-species analysis, we compared those DMPs with differential liver DNA methylation following early-life arsenic exposure in the apoE knockout (apoE-/-) mouse model of atherosclerosis. RESULTS: A total of 20 and 13 DMPs were potential mediators for CVD incidence and mortality, respectively, several of them annotated to genes related to diabetes. Eleven of these DMPs were similarly associated with incident CVD in 3 diverse prospective cohorts (Framingham Heart Study, Women's Health Initiative, and Multi-Ethnic Study of Atherosclerosis). In the mouse model, differentially methylated regions in 20 of those genes and DMPs in 10 genes were associated with arsenic. CONCLUSIONS: Differential DNA methylation might be part of the biological link between arsenic and CVD. The gene functions suggest that diabetes might represent a relevant mechanism for arsenic-related cardiovascular risk in populations with a high burden of diabetes.


Assuntos
Arsênio , Aterosclerose , Doenças Cardiovasculares , Animais , Apolipoproteínas E , Arsênio/toxicidade , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/genética , Metilação de DNA , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Estudos Prospectivos
20.
J Microsc ; 294(3): 276-294, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38656474

RESUMO

Modern life science research is a collaborative effort. Few research groups can single-handedly support the necessary equipment, expertise and personnel needed for the ever-expanding portfolio of technologies that are required across multiple disciplines in today's life science endeavours. Thus, research institutes are increasingly setting up scientific core facilities to provide access and specialised support for cutting-edge technologies. Maintaining the momentum needed to carry out leading research while ensuring high-quality daily operations is an ongoing challenge, regardless of the resources allocated to establish such facilities. Here, we outline and discuss the range of activities required to keep things running once a scientific imaging core facility has been established. These include managing a wide range of equipment and users, handling repairs and service contracts, planning for equipment upgrades, renewals, or decommissioning, and continuously upskilling while balancing innovation and consolidation.


Assuntos
Disciplinas das Ciências Biológicas , Disciplinas das Ciências Biológicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA