Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(15): 158101, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682967

RESUMO

Temperature-dependent x-ray photon correlation spectroscopy (XPCS) measurements are reported for a binary diblock-copolymer blend that self-assembles into an aperiodic dodecagonal quasicrystal and a periodic Frank-Kasper σ phase approximant. The measured structural relaxation times are Bragg scattering wavevector independent and are 5 times faster in the dodecagonal quasicrystal than the σ phase, with minimal temperature dependence. The underlying dynamical relaxations are ascribed to differences in particle motion at the grain boundaries within each of these tetrahedrally close-packed assemblies. These results identify unprecedented particle dynamics measurements of tetrahedrally coordinated micellar block polymers, thus expanding the application of XPCS to ordered soft materials.

2.
Genet Sel Evol ; 56(1): 56, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080565

RESUMO

BACKGROUND: Managing genetic diversity is critically important for maintaining species fitness. Excessive homozygosity caused by the loss of genetic diversity can have detrimental effects on the reproduction and production performance of a breed. Analysis of genetic diversity can facilitate the identification of signatures of selection which may contribute to the specific characteristics regarding the health, production and physical appearance of a breed or population. In this study, breeds with well-characterized traits such as fine wool production (Rambouillet, N = 745), parasite resistance (Katahdin, N = 581) and environmental hardiness (Dorper, N = 265) were evaluated for inbreeding, effective population size (Ne), runs of homozygosity (ROH) and Wright's fixation index (FST) outlier approach to identify differential signatures of selection at 36,113 autosomal single nucleotide polymorphisms (SNPs). RESULTS: Katahdin sheep had the largest current Ne at the most recent generation estimated with both the GONe and NeEstimator software. The most highly conserved ROH Island was identified in Rambouillet with a signature of selection on chromosome 6 containing 202 SNPs called in an ROH in 50 to 94% of the individuals. This region contained the DCAF16, LCORL and NCAPG genes that have been previously reported to be under selection and have biological roles related to milk production and growth traits. The outlier regions identified through the FST comparisons of Katahdin with Rambouillet and Dorper contained genes with known roles in milk production and mastitis resistance or susceptibility, and the FST comparisons of Rambouillet with Katahdin and Dorper identified genes related to wool growth, suggesting these traits have been under natural or artificial selection pressure in these populations. Genes involved in the cytokine-cytokine receptor interaction pathways were identified in all FST breed comparisons, which indicates the presence of allelic diversity between these breeds in genomic regions controlling cytokine signaling mechanisms. CONCLUSIONS: In this paper, we describe signatures of selection within diverse and economically important U.S. sheep breeds. The genes contained within these signatures are proposed for further study to understand their relevance to biological traits and improve understanding of breed diversity.


Assuntos
Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Ovinos/genética , Homozigoto , Variação Genética , Estados Unidos , Endogamia , Carneiro Doméstico/genética , Cruzamento/métodos
3.
J Anim Breed Genet ; 141(3): 304-316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38108572

RESUMO

The Katahdin hair breed gained popularity in the United States as low input and prolific, with a propensity to exhibit parasite resistance. With the introduction of genomically enhanced estimated breeding values (GEBV) to the Katahdin genetic evaluation, defining the diversity present in the breed is pertinent. Utilizing pedigree records (n = 92,030) from 1984 to 2019 from the National Sheep Improvement Program, our objectives were to (i) estimate the completeness and quality of the pedigree, (ii) calculate diversity statistics for the whole pedigree and relevant reference subpopulations and (iii) assess the impact of current diversity on genomic selection. Reference 1 was Katahdins born from 2017 to 2019 (n = 23,494), while reference 2 was a subset with at least three generations of Katahdin ancestry (n = 9327). The completeness of the whole pedigree, and the pedigrees of reference 1 and reference 2, were above 50% through the fourth, fifth and seventh generation of ancestors, respectively. Effective population size (Ne) averaged 111 animals with a range from 42.2 to 451.0. The average generation interval was 2.9 years for the whole pedigree and reference 1, and 2.8 years for reference 2. The mean individual inbreeding and average relatedness coefficients were 1.62% and 0.91%, 1.74% and 0.90% and 2.94% and 1.46% for the whole pedigree, reference 1, and reference 2, respectively. There were over 300 effective founders in the whole pedigree and reference 1, with 169 in reference 2. Effective number of ancestors were over 150 for the whole pedigree and reference 1, while there were 67 for reference 2. Prediction accuracies increased as the reference population grew from 1k to 7.5k and plateaued at 15k animals. Given the large number of founders and ancestors contributing to the base genetic variation in the breed, the Ne is sufficient to maintain diversity while achieving progress with selection. Stable low rates of inbreeding and relatedness suggest that incorporating genetic conservation in breeding decisions is currently not of high priority. Current Ne suggests that with limited genotyping, high levels of accuracy for genomic prediction can be achieved. However, intense selection on GEBV may cause loss of genetic diversity long term.


Assuntos
Variação Genética , Endogamia , Ovinos/genética , Animais , Linhagem , Densidade Demográfica , Seleção Genética
4.
Transl Anim Sci ; 8: txae044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585169

RESUMO

Sheep breeders requested that the U.S. Sheep Experiment Station (USSES) to participate in national genetic evaluation through the National Sheep Improvement Program (NSIP). The reasons included the need for (1) a comparison of the productivity of industry and United States Department of Agriculture (USDA) lines, (2) transparency of USDA flocks, (3) genetic ties for NSIP by sampling of industry flocks, and (4) development of premium genetic lines for public release. In response, USSES began to incorporate external sires from NSIP participating flocks into the USSES Targhee flock. Our objective, based on a pedigree analysis, was to test if introgression of external genetics into the flock was achieved. The pedigree included 13,189 animals with mean maximum generations, mean complete generations, and mean equivalent complete generations of 4.2, 1.8, and 2.6, respectively. The mean generation interval was 3.1 yr. The reference population was defined as lambs born from 2021 to 2023 (n = 792). Two additional populations were defined as the current mature ewe flock (n = 123) and the current mature rams (n = 14). The Genetic Conservation Index averaged 7.7 for the full population and 25.7 for the reference population. Overall inbreeding was 0.003 for the full population and 0.006 for the reference population. The rate of inbreeding was 0.0003 per generation. Average relatedness was 0.015 for the full population and 0.018 for the reference population. The effective number of founders, effective number of ancestors, and founder genome equivalents contributing to the reference population were 60, 39, and 19.1, respectively. The ratio of the effective number of founders to the effective number of ancestors was 1.5, indicating the presence of genetic bottlenecks. Measures of effective population size ranged from 102 to 547. Of the 704 offspring produced by external sires, 17 ram lambs and 132 ewe lambs were retained for breeding. The USSES sires produced 299 offspring with 2 ram lambs and 51 ewe lambs retained. Incorporating external sires resulted in a cumulative percentage of genetic variance of 48.8, 49.1, and 44.2 of external genetics for the reference population, current mature ewe flock, and current mature rams, respectively. Stakeholder needs were addressed by introgression of external sires and participation in NSIP, but future selection practices need to be modified to maintain a minimum of 50% USSES core genetics in the flock.

5.
Transl Anim Sci ; 8: txae090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38898932

RESUMO

In beef production herds, unique situations such as breeding system, economic parameters, and current phenotypic performance can affect the emphasis of traits in the breeding goal and consequently the weighting of traits within a selection index. An often overlooked component of breeding goals is the planning horizon, or the time span to consider the economic impact of a selection decision, that varies between enterprises. A platform for constructing economic selection indexes (iGENDEC) was used to determine the impact of planning horizon length, breeding system, and sale endpoint on the relative emphasis of traits in the breeding goal and the re-ranking of selection candidates. As part of this investigation, the adjustment of phenotypic means for hot carcass weight and planning horizons were used to determine the impact of the relative emphasis on hot carcass weight as its mean approached a predetermined discount threshold. General-purpose indexes were created for animals sold at weaning and slaughter for three breeding systems with six different planning horizons (2, 5, 10, 20, 30, and 50 yr). As planning horizon increased, the relative emphasis on weaning weight or hot carcass weight, which affected revenue, decreased while the relative emphasis on stayability and mature weight increased. As the phenotypic mean for hot carcass weight approached and surpassed a predetermined discount threshold, the relative emphasis decreased before increasing again, once the mean weight surpassed the threshold. Rank correlations between indexes with different sale endpoints was 0.71 ±â€…0.1. Within a slaughter endpoint, re-ranking occurred between short and long planning horizons (r = 0.78 ±â€…0.09) while that of a weaning endpoint was less substantial (r = 0.85 ±â€…0.10). Jacard index scores between indexes with different planning horizons ranged from 39.7% to 87.9% and from 47.9% to 78.7% for weaning and carcass endpoints, respectively, for the top 5% of selection candidates. These results illustrate that the determination of a planning horizon can impact the rank of selection candidates and increases in net profit.

6.
Front Genet ; 15: 1436990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161421

RESUMO

Knowledge of past and present genetic diversity within a breed is critical for the design and optimization of breeding programs as well as the development of strategies for the conservation of genetic resources. The Polypay sheep breed was developed at the U.S. Sheep Experiment Station (USSES) in 1968 with the goal of improving productivity in Western U.S. range flocks. It has since flourished in the more intensively managed production systems throughout the U.S. The genetic diversity of the breed has yet to be documented. Therefore, the primary objective of this study was to perform a comprehensive evaluation of the genetic diversity and population structure of U.S. Polypay sheep using both pedigree- and genomic-based methods. Pedigree data from 193 Polypay flocks participating in the National Sheep Improvement Program (NSIP) were combined with pedigree records from USSES (n = 162,997), tracing back to the breed's origin. A subset of these pedigreed sheep from 32 flocks born from 2011 to 2023 were genotyped with the GGP Ovine 50K BeadChip containing 51,867 single nucleotide polymorphisms (SNPs). Four subgroups were used for the pedigree-based analyses: 1) the current generation of animals born in 2020-2022 (n = 20,701), 2) the current generation with a minimum of four generations of known ancestors (n = 12,685), 3) only genotyped animals (n = 1,856), and 4) the sires of the current generation (n = 509). Pedigree-based inbreeding for the full population was 2.2%, with a rate of inbreeding of 0.22% per generation. Pedigree-based inbreeding, Wright's inbreeding, and genomic inbreeding based on runs of homozygosity were 2.9%, 1.3%, and 5.1%, respectively, for the genotyped population. The effective population size ranged from 41 to 249 for the pedigree-based methods and 118 for the genomic-based estimate. Expected and observed heterozygosity levels were 0.409 and 0.403, respectively. Population substructure was evident based on the fixation index (FST), principal component analysis, and model-based population structure. These analyses provided evidence of differentiation from the foundation flock (USSES). Overall, the Polypay breed exhibited substantial genetic diversity and the presence of a population substructure that provides a basis for the implementation of genomic selection in the breed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA