Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
BMC Anesthesiol ; 23(1): 224, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380958

RESUMO

BACKGROUND: The anesthetic states are accompanied by functional alterations. However, the dose-related adaptive alterations in the higher-order network under anesthesia, e. g. default mode network (DMN), are poorly revealed. METHODS: We implanted electrodes in brain regions of the rat DMN to acquire local field potentials to investigate the perturbations produced by anesthesia. Relative power spectral density, static functional connectivity (FC), fuzzy entropy of dynamic FC, and topological features were computed from the data. RESULTS: The results showed that adaptive reconstruction was induced by isoflurane, exhibiting reduced static and stable long-range FC, and altered topological features. These reconstruction patterns were in a dose-related fashion. CONCLUSION: These results might impart insights into the neural network mechanisms underlying anesthesia and suggest the potential of monitoring the depth of anesthesia based on the parameters of DMN.


Assuntos
Anestesia , Anestesiologia , Isoflurano , Animais , Ratos , Eletrodos , Entropia
2.
Brain Res Bull ; 207: 110869, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184151

RESUMO

In temporal lobe epilepsy (TLE), the epileptogenic zones, such as the temporal lobe structure, could generate pathological high-frequency oscillations (pHFOs, 250-500 Hz) before the ictal period. These pHFOs have also been observed during the process of seizures in both TLE patients and animals, exhibiting a critical role as promising biomarkers for TLE seizures. TLE seizures could be modulated via regulating the neural excitability in epileptogenic zones, for that TLE is primarily associated with the excitation-inhibition imbalance. However, whether these kinds of modulations could also impact the pHFOs characteristics during TLE seizures is still unclear. For this purpose, we pharmaco-genetically inhibited the principal cells (PCs) in the mouse CA3 region and tracked the difference in the behavioral and electrophysiological features during LiCl-pilocarpine-induced TLE seizure between the hM4Di+CNO (experimental) mice and mCherry+CNO (control) mice. Delayed latency, decreased averaged duration, and reduced counts of the generalized seizure were observed in the experimental mice. Besides, the electrophysiological characteristics, such as the firing rate of PCs and the count of pHFO, exhibited significant decline in the CA3 and CA1 regions. During TLE seizure, there existed strong phase-coupling between pHFO and PCs spike timing in the control mice, while it was abolished in the experimental mice. In addition, we also found that the counts of pHFO were significantly associated with the behavioral features, indicating the close relationships within them. Collectively, our findings suggested that alterations in pHFO and the retardation of seizures may be attributed to disruptions in neuronal excitability, and the variations of electrophysiological features were related to seizure severity during TLE seizures. These results provide valuable insights into the role of pHFOs in TLE and shed light on the underlying mechanisms involved.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Camundongos , Animais , Epilepsia do Lobo Temporal/patologia , Convulsões , Lobo Temporal/patologia , Pilocarpina/efeitos adversos , Eletroencefalografia/métodos
3.
Sci Total Environ ; 885: 163820, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37142029

RESUMO

Neonicotinoids are among the most widely used insecticides in the world and are recognized as a potential cause of pollinator decline. Previous studies have demonstrated that the neonicotinoid thiacloprid has adverse effects on foraging and memory behaviors. However, there is no direct evidence linking thiacloprid-induced neuronal cell damage in the brains of honeybees to learning and memory dysfunction. Adult honeybee (Apis mellifera L.) workers were chronically exposed to sub-lethal concentrations of thiacloprid. We discovered that thiacloprid negatively affected their survival, food consumption, and body weight. In addition, sucrose sensitivity and memory performance were impaired. We evaluated the apoptosis of honeybee brain cells using TUNEL (Terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling) and Caspase-3 assays, which revealed that thiacloprid increases the dose-dependent apoptosis of neurons in the mushroom bodies (MB) and antennal lobes (AL). We also determined the abnormal transcripts of multiple genes, including vitellogenin (Vg), immune system genes (apidaecin and catalase), and memory-associated genes (pka, creb, Nmdar1, Dop2, Oa1, Oa-2R, and Oa-3R). These results indicate that exposure to sublethal concentrations of thiacloprid cause abnormal expression of memory-related genes and apoptosis of brain cells in the AL and MB, which may contribute to the memory disorder induced by thiacloprid exposure.


Assuntos
Inseticidas , Aprendizagem , Abelhas , Animais , Neonicotinoides/toxicidade , Inseticidas/toxicidade , Apoptose
4.
Toxics ; 12(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38250974

RESUMO

Honey bees have significant ecological and economic value as important pollinators, but they are continuously exposed to various environmental stressors, including insecticides, which can impair their health and cause colony decline. (1) Background: Cognitive abilities are vital for the functional maintenance of honey bees; however, it remains unknown if chronic, low-dose exposure to thiacloprid during the larval stage impairs the cognitive abilities of emerged adult honey bees. (2) Methods: To explore this question, honey bee larvae were fed 0, 0.5, and 1.0 mg/L thiacloprid during their developmental phase. Then, the cognitive (i.e., olfactory learning and memory) abilities of adult honey bees were quantified to assess the delayed impacts of early-stage thiacloprid exposure on adult honey bee cognition. Neural apoptosis and transcriptomic level were also evaluated to explore the neurological mechanisms underlying these effects. (3) Results: Our results revealed that chronic larval exposure to sublethal thiacloprid impaired the learning and memory abilities of adult honey bees by inducing neuronal apoptosis and transcriptomic alterations. (4) Conclusions: We highlighted a previously unknown impairment caused by thiacloprid in honey bees.

5.
Brain Res Bull ; 204: 110805, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37925081

RESUMO

AIMS: Very high-frequency oscillations (VHFOs, >500 Hz) are considered a highly sensitive biomarker of seizures. We hypothesized that VHFOs may exhibit specificity towards hypersynchronous (HYP) seizures and low-voltage fast (LVF) seizures in temporal lobe epilepsy (TLE). METHODS: Local field potentials were recorded from the hippocampal network in TLE mice induced by pilocarpine. Subsequently, we analyzed the VHFO features, including their temporal-frequency characteristics and VHFO/theta coupling, during three states: baseline, preictal, and postictal for both HYP- and LVF-seizure groups. RESULTS: Significant changes in most of the VHFO features were observed during the preictal state in both seizure groups. In the postictal state, VHFO features in the HYP-seizure group exhibited inverse alterations and appeared to align with those observed during baseline conditions. However, such phenomena were not observed after TLE seizures in the LVF-seizure group. CONCLUSION: Our findings highlight distinct patterns of VHFO feature changes across different states of HYP seizures and LVF seizures. These results suggest that VHFOs could serve as indicative biomarkers for seizure alterations specifically associated with HYP-seizure states.


Assuntos
Epilepsia do Lobo Temporal , Camundongos , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Pilocarpina/toxicidade , Eletroencefalografia/métodos , Convulsões/induzido quimicamente , Hipocampo
6.
Nat Commun ; 14(1): 7073, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925529

RESUMO

The greater wax moth (GWM), Galleria mellonella (Lepidoptera: Pyralidae), is a major bee pest that causes significant damage to beehives and results in economic losses. Bacillus thuringiensis (Bt) appears as a potential sustainable solution to control this pest. Here, we develop a novel Bt strain (designated BiotGm) that exhibits insecticidal activity against GWM larvae with a LC50 value lower than 2 µg/g, and low toxicity levels to honey bee with a LC50 = 20598.78 µg/mL for larvae and no observed adverse effect concentration = 100 µg/mL for adults. We design an entrapment method consisting of a lure for GWM larvae, BiotGm, and a trapping device that prevents bees from contacting the lure. We find that this method reduces the population of GWM larvae in both laboratory and field trials. Overall, these results provide a promising direction for the application of Bt-based biological control of GWM in beehives, although further optimization remain necessary.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Abelhas , Animais , Controle Biológico de Vetores/métodos , Larva , Inseticidas/farmacologia
7.
Front Insect Sci ; 2: 844957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38468782

RESUMO

Understanding the cause of honey bee (Apis mellifera) population decline has attracted immense attention worldwide in recent years. Exposure to neonicotinoid pesticides is considered one of the most probable factors due to the physiological and behavioral damage they cause to honey bees. However, the influence of thiacloprid, a relatively less toxic cyanogen-substituted form of neonicotinoid, on honey bee (Apis mellifera L.) development is not well studied. The toxicity of sublethal thiacloprid to larvae, pupae, and emerging honey bees was assessed under laboratory conditions. We found that thiacloprid reduced the survival rate of larvae and pupae, and delayed the development of bees which led to lower bodyweight and size. Furthermore, we identified differentially expressed genes involved in metabolism and immunity though RNA-sequencing of newly-emerged adult bees. GO enrichment analysis identified genes involved in metabolism, catalytic activity, and transporter activity. KEGG pathway analysis indicated that thiacloprid induced up-regulation of genes related to glutathione metabolism and Toll-like receptor signaling pathway. Overall, our results suggest that chronic sublethal thiacloprid can affect honey bee colonies by reducing survival and delaying bee development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA