RESUMO
Halogenation of bioactive peptides via incorporation of non-natural amino acid derivatives during chemical synthesis is a common strategy to enhance functionality. Bacterial tyrptophan halogenases efficiently catalyze regiospecific halogenation of the free amino acid tryptophan, both in vitro and in vivo. Expansion of their substrate scope to peptides and proteins would facilitate highly-regulated post-synthesis/expression halogenation. Here, we demonstrate novel in vitro halogenation (chlorination and bromination) of peptides by select halogenase enzymes and identify the C-terminal (G/S)GW motif as a preferred substrate. In a first proof-of-principle experiment, we also demonstrate chemo-catalyzed derivatization of an enzymatically chlorinated peptide, albeit with low efficiency. We further rationally derive PyrH halogenase mutants showing improved halogenation of the (G/S)GW motif, both as a free peptide and when genetically fused to model proteins with efficiencies up to 90%.
Assuntos
Halogenação , Oxirredutases , Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeos/metabolismo , Aminoácidos/metabolismoRESUMO
Biocatalytic C-H halogenation is becoming increasingly attractive due to excellent catalyst-controlled selectivity and environmentally benign reaction conditions. Significant efforts have been made on enzymatic halogenation of industrial arenes in a cost-effective manner. Here we report an unprecedented enzymatic halogenation of a panel of industrially important indole, azaindole and anthranilamide derivatives using a thermostable RebH variant without addition of any external flavin reductase enzyme. The reactions were catalyzed by the RebH variant 3-LSR enzyme with the help of a co-purified E. coli reductase identified as alkyl hydroperoxide reductase F (AhpF).