RESUMO
Over an extended period of evolution and natural selection, a multitude of species developed a diverse array of biological interface features with specific functions. These biological structures provide a rich source of inspiration for the design of bionic structures on superhydrophobic surfaces. Understanding the functional mechanism of plant leaves is of paramount importance for the advancement of new engineering materials and the further promotion of engineering applications of bionic research. The hierarchical structure of microcrater-covered nanograss (MCNG) on the surface of E. helioscopia L. leaf provided the inspiration for the bionic MCNG surface, which was successfully prepared on a copper substrate by hybrid laser micromachining technology and chemical etching. The combined action of texture structure and surface chemistry resulted in a contact angle of 169° ± 1° for MCNG surface droplets and a rolling angle of less than 1°. Notably, the condensation-induced adhesion force does not augment with the increase of the temperature difference, which facilitated the shedding of hot droplets from the surface. The microscope observation revealed a high density of condensed droplets on the MCNG surface and the tangible jumping behavior of the droplets. The fabricated MCNG also demonstrated excellent antifrost/anti-icing abilities in low-temperature and high-humidity environments. Finally, the study confirmed the exceptional mechanical durability and reusability of the MCNG surface through various tests, including scratch damage, sandpaper wear, water flow impact and flushing, and condensation-drying cycle tests. The nanograss can be effectively protected within the microcrater structure. This research presents a promising approach for preventing and/or removing unwanted droplets in numerous engineering applications.
Assuntos
Euphorbia , Folhas de Planta , Propriedades de Superfície , Euphorbia/química , Folhas de Planta/química , Nanoestruturas/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da PartículaRESUMO
In the realm of colloid and interface science, new types of green surfactants, including anionic Pluronic alcohol ether carboxylate (AEC), branched alkyl glucoside (IG), and zwitterionic coconut oil amide propyl betaine (CAB), have been identified and merit further exploration. AEC, characterized by its inclusion of 5 EO and 3.5 PO units, was synthesized, and its behavior in aqueous solutions with IG and CAB was meticulously examined. Their performance in applications such as foam generation, wetting, and the dispersion and stabilization of graphene was also evaluated. At αAE5P3C = 0.5, AE5P3C/CAB exhibited superior surface and interfacial properties compared to AE5P3C/IG. In these hybrid systems, the self-assembly of micelles is predominantly influenced by hydrogen bonding, electrostatic interactions, and hydrophobic forces. Kinetic analysis further confirmed that the driving force for micelle formation in these hybrid systems is enthalpy, with the adsorption process involving a mixed diffusion-kinetic adsorption mechanism. AE5P3C/CAB demonstrated enhanced foaming ability, foam stability, and wetting properties compared to AE5P3C/IG. Intriguingly, the optimal dispersion and stabilization of graphene were achieved with AE5P3C/IG at αAE5P3C = 0.2, providing a foundational basis for its potential application in graphene-based systems. A thorough examination of the synergistic mechanisms and application potential of these three distinct surfactants in aqueous solutions was presented, taking into account various charged ions and the specific hydrophilic and hydrophobic groups of EO and PO. This study not only provides fundamental insights into their intrinsic properties but also offers a fresh perspective for the ongoing exploration of green surfactants.
RESUMO
INTRODUCTION: Left ventricular diastolic dysfunction (LVDD) frequently occurs in haemodialysis patients and is associated with adverse outcomes. Lung ultrasound (LUS) has been recently proposed for the quantification of extravascular lung water through assessment of B-lines. LUS findings and their relationship with LVDD in clinically euvolemic haemodialysis patients were investigated in this study. METHODS: Echocardiography and LUS examinations were performed on each patient. Multivariate linear regression and forward stepwise logistic regression were performed to determine the relationship between B-lines and LVDD. A receiver operating characteristic (ROC) curve with area under the curve (AUC) was calculated to determine the accuracy of B-lines for evaluating LVDD. RESULTS: A total of 119 patients were enrolled. The number of B-lines was statistically related to echocardiographic parameters (LAVI, LVEDVI, E/A, and E/e') of diastolic function, while the relationship between B-lines and LVEF disappeared after adjusting for potential confounding factors. Additionally, compared with the mild B-line group (B-lines: <14), the moderate (B-lines: 14-30) and severe B-line groups (B-lines: >30) were associated with an increased risk of LVDD (OR 24.344, 95% CI 4.854-122.084, p < 0.001, and OR 94.552, 95% CI 9.617-929.022, p < 0.001, respectively). Furthermore, the AUC of the ROC curve for B-lines predicting LVDD was 0.845, and the cut-off of B-lines was 14.5 (sensitivity 64.91%, specificity 93.55%). CONCLUSION: LUS B-lines were closely associated with left ventricular diastolic function in clinically euvolemic haemodialysis patients. Moreover, our findings suggested a B-line ≥14.5 as a reliable cut-off value for identifying patients with LVDD. LUS B-lines may be used as a novel indicator for evaluating LVDD.
Assuntos
Diálise Renal , Disfunção Ventricular Esquerda , Humanos , Diálise Renal/efeitos adversos , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/etiologia , Ecocardiografia/efeitos adversos , Curva ROC , Pulmão , Função Ventricular EsquerdaRESUMO
BACKGROUND: To investigate the changes in the unhealthy eye-related behaviors of junior middle school students during the COVID-19 pandemic and the double reduction policy and its relationship with myopia. METHODS: Data were obtained from the 2019-2022 Tianjin Children and Youth Myopia, Common Diseases and Health Influencing Factors Survey. Latent profile analysis (LPA) and a generalized linear model (GLM) were applied to analyze the effect of eye-related behavior classes on myopia. RESULTS: A total of 2508 junior middle school students were included. The types of eye-related behavior were categorized into the medium-healthy behavior group, heavy academic burden and near-eye behavior group, insufficient lighting group and high-healthy behavior group. Students with heavy academic burdens and near-eye behavior were more likely to develop myopia than were those in the high-healthy group (OR = 1.466, 95% CI = 1.203-1.787; P < 0.001). CONCLUSIONS: The dual reduction policy has a positive effect on improving unhealthy eye-related behaviors, and the prevention and control of myopia through the use of different combinations of eye-related behaviors are heterogeneous among junior middle school students. In the post-COVID-19 period, we should continue to implement a double reduction policy and formulate targeted eye-related behavior strategies to provide an important reference for the prevention and control of myopia among children and adolescents during public health emergencies in the future.
Assuntos
COVID-19 , Miopia , Estudantes , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/psicologia , Miopia/epidemiologia , Miopia/psicologia , Miopia/prevenção & controle , Masculino , Feminino , Adolescente , Criança , Estudantes/psicologia , Estudantes/estatística & dados numéricos , China/epidemiologia , Comportamentos Relacionados com a Saúde , Pandemias , Instituições Acadêmicas , Inquéritos e QuestionáriosRESUMO
Foodborne transmission of the Hepatitis E virus (HEV) is becoming an important public health problem in China, but the food associated with the HEV transmission route remains unclear. Pig liver is among the suspected food products involved in HEV transmission. Our research aimed to survey the contamination rate and genotype identification of HEV in pig livers from different types of markets in selected provinces of China. reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to screen for HEV in pig livers, nest RT-PCR was used for partial amplification of opren reading frame (ORF) 2, followed by sequencing, and phylogenetic analysis to determine the genotype of positive samples. A total of 787 pig liver samples from 7 provinces were collected. The average positive rate of HEV was 8.13% (64/787), Inner Mongolia (14.29%, 1/7) and Hebei province (14.29%, 23/161) showed the highest positive rate. There was a significant difference among the provinces (p < 0.01). Three major market types (wholesale market, supermarket, and butcher's shop) were included in this study, and the positive rates were 5.28% (21/398), 15.86% (23/145), and 8.20% (20/244), respectively. There was no significant difference among the three market types. Eleven of the positive samples were partially sequenced and identified genotypes 4a, 4d, and 3a.
RESUMO
OBJECTIVES: To analyze the mode of school physical activity, the relationship with obesity, and participation willingness and behavior in the relationship between modes of school physical activity and BMI in students with overweight or obesity. DESIGN: Cross-sectional study. SAMPLE: Data from the 2014 Physical Fitness and Health Surveillance of Chinese School Students was used, wherein physical measurements and questionnaires of 3476 middle school students were collected. MEASUREMENTS: Physical measurements and questionnaires were completed. Latent profile analysis and mediated effects analysis were conducted using Mplus 8.3 and IBM SPSS 26.0 for data description and statistical analysis. RESULT: After latent profile analysis divided into poor (9.35%), medium (65.16%), and good (25.49%) groups of school physical activity, among junior middle school students, medium (OR = 0.428, 95% CI = 0.259-0.707, p = .001) and good (OR = 0.448, 95% CI = 0.255-0.718, p = .002) groups were positive for controlling overweight. Among students with overweight or obesity, participation willingness mediated the relationship between the mode of school physical activity and BMI, with effect coefficients of -0.120 (95% CI = -0.264 to -0.016) and -0.240 (95% CI = -0.426 to -0.099). CONCLUSIONS: School physical activity modes have a positive effect only on preventing and controlling overweight in junior middle school students. For middle school students with obesity, weight-specific measures should be considered for their prevention and control.
Assuntos
Índice de Massa Corporal , Exercício Físico , Sobrepeso , Estudantes , Humanos , Masculino , Adolescente , Estudos Transversais , Feminino , Inquéritos e Questionários , Estudantes/psicologia , Estudantes/estatística & dados numéricos , Sobrepeso/psicologia , Obesidade Infantil/psicologia , China/epidemiologia , Instituições Acadêmicas , CriançaRESUMO
Anthropogenic environments such as those created by intensive farming of livestock, have been proposed to provide ideal selection pressure for the emergence of antimicrobial-resistant Escherichia coli bacteria and antimicrobial resistance genes (ARGs) and spread to humans. Here, we performed a longitudinal study in a large-scale commercial poultry farm in China, collecting E. coli isolates from both farm and slaughterhouse; targeting animals, carcasses, workers and their households and environment. By using whole-genome phylogenetic analysis and network analysis based on single nucleotide polymorphisms (SNPs), we found highly interrelated non-pathogenic and pathogenic E. coli strains with phylogenetic intermixing, and a high prevalence of shared multidrug resistance profiles amongst livestock, human and environment. Through an original data processing pipeline which combines omics, machine learning, gene sharing network and mobile genetic elements analysis, we investigated the resistance to 26 different antimicrobials and identified 361 genes associated to antimicrobial resistance (AMR) phenotypes; 58 of these were known AMR-associated genes and 35 were associated to multidrug resistance. We uncovered an extensive network of genes, correlated to AMR phenotypes, shared among livestock, humans, farm and slaughterhouse environments. We also found several human, livestock and environmental isolates sharing closely related mobile genetic elements carrying ARGs across host species and environments. In a scenario where no consensus exists on how antibiotic use in the livestock may affect antibiotic resistance in the human population, our findings provide novel insights into the broader epidemiology of antimicrobial resistance in livestock farming. Moreover, our original data analysis method has the potential to uncover AMR transmission pathways when applied to the study of other pathogens active in other anthropogenic environments characterised by complex interconnections between host species.
Assuntos
Escherichia coli , Gado , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla , Fazendas , Humanos , Gado/microbiologia , Estudos Longitudinais , Aprendizado de Máquina , FilogeniaRESUMO
BACKGROUND: Gaucher disease [GD], an autosomal recessive lysosomal storage disorder, is characterized by progressive lysosomal storage of glucocerebroside in macrophages predominantly in bone, bone marrow, liver, and spleen. Meta-analysis of global GD epidemiology was not available before this study. METHODS: To provide a systematic review and meta-analysis of birth prevalence and prevalence of GD in multiple countries. MEDLINE and EMBASE databases were searched for original research articles on the epidemiology of GD from inception until July 21, 2021. Meta-analysis, adopting a random-effects logistic model, was performed to estimate the birth prevalence and prevalence of GD. RESULTS: Eighteen studies that were screened of 1874 records were included for data extraction. The studies that fulfilled the criteria for inclusion involved 15 areas/countries. The global birth prevalence of GD was 1.5 cases [95% confidence interval: 1.0 to 2.0] per 100,000 live births. The global prevalence of GD was 0.9 cases [95% confidence interval: 0.7 to 1.1] per 100,000 inhabitants. CONCLUSIONS: This is the first comprehensive systematic review that presented quantitative data of GD global epidemiology. Quantitative data on global epidemiology of GD could be the fundamental to evaluate the global efforts on building a better world for GD patients.
Assuntos
Doença de Gaucher , Humanos , Doença de Gaucher/epidemiologia , Fígado , Prevalência , MacrófagosRESUMO
BACKGROUND: Light chain proximal tubulopathy (LCPT) is a rare M-proteinemia-related nephropathy. Non-crystalline LCPT is even rarer. We herein report an unusual case of renal dysfunction and proteinuria due to κ-restricted and non-crystalline LCPT in a context of monoclonal gammopathy of renal significance (MGRS) without Fanconi syndrome (FS). CASE PRESENTATION: A 67-year-old man was admitted for a 2-year history of proteinuria and renal dysfunction. Fanconi syndrome (FS) was not observed. He was noted to have IgG-κ M protein, and the previous bone marrow biopsy revealed that atypical plasma cells accounted for 1.5% of the cells, which did not meet the diagnostic criteria for multiple myeloma. A renal biopsy revealed proximal tubular injury, including increased lysosomes with irregular contours and a mottled appearance without crystalline structure and the accumulation of κ light chains. He was diagnosed with non-crystalline LCPT with MGRS. Concurrently, we reviewed the non-crystalline LCPT cases previously published in the literature. Our patient finally received chemotherapy with a bortezomib and dexamethasone regimen. The patient did not seem to achieve evident nephrological and hematological remission after chemotherapy, but he was in a stable condition. CONCLUSION: Very few similar cases are reported in the literature. It is considered crucial to enhance our knowledge about these cases to establish the definition of the non-crystalline LCPT entity and allow for early diagnosis. Chemotherapy may not be necessary for all patients to maintain good renal function. Future prospective clinical research studies are necessary.
Assuntos
Síndrome de Fanconi , Nefropatias , Mieloma Múltiplo , Paraproteinemias , Masculino , Humanos , Idoso , Síndrome de Fanconi/complicações , Síndrome de Fanconi/diagnóstico , Paraproteinemias/complicações , Paraproteinemias/diagnóstico , Paraproteinemias/patologia , Rim/fisiologia , Rim/patologia , Nefropatias/etiologia , Nefropatias/complicações , Mieloma Múltiplo/complicações , Mieloma Múltiplo/diagnóstico , ProteinúriaRESUMO
OBJECTIVES: Network pharmacology and molecular docking were used to predict endogenous active metabolites with protective effects in diabetic kidney disease (DKD). METHODS: We utilized metabolomics to screen differentially expressed metabolites in kidney tissues of mice with type 2 DKD and predicted potential targets using relevant databases. The interaction network between endogenous active metabolites and target proteins was established by integrating differentially expressed metabolites and proteins associated with DKD identified through proteomics. Gene ontology (GO) and signaling pathway enrichment analysis were performed. The biological functions of the active candidate metabolites and their effects on downstream pathways were also verified. RESULTS: Metabolomics revealed 130 differentially expressed metabolites. Through co-expression network analysis coupled with the investigation of differentially expressed proteins in proteomics, 2-hydroxyphenylpropionylglycine (2-HPG) emerged as a key regulator of DKD. 2-HPG was found to modulate the progression of DKD by regulating the conformation and activity of synaptophysin 1 (SYNJ1), with a correlation coefficient of 0.974. In vivo experiments revealed that SYNJ1 expression was significantly downregulated in the Macroalbuminuria Group compared to the Control Group and negatively correlated with proteinuria (r = -0.7137), indicating its important role in DKD progression. Immunofluorescence demonstrated that treatment with 2-HPG restores the expression of the foot process marker protein Wilms tumor-1 (WT-1) in podocytes injured by high glucose levels. Western blot and polymerase chain reaction support the involvement of SYNJ1 in this process. CONCLUSIONS: This study demonstrated the significance of the 2-HPG/SYNJ1 signaling axis in safeguarding the foot process of podocytes in DKD.
Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Animais , Camundongos , Nefropatias Diabéticas/genética , Simulação de Acoplamento Molecular , Farmacologia em Rede , Glomérulos Renais/metabolismo , Podócitos/metabolismoRESUMO
Macrophages are crucial components of the immune system and play a critical role in the initial defense against pathogens. They are highly heterogeneous and plastic and can be polarized into classically activated macrophages (M1) or selectively activated macrophages (M2) in response to local microenvironments. Macrophage polarization involves the regulation of multiple signaling pathways and transcription factors. Here, we focused on the origin of macrophages, the phenotype and polarization of macrophages, as well as the signaling pathways associated with macrophage polarization. We also highlighted the role of macrophage polarization in lung diseases. We intend to enhance the understanding of the functions and immunomodulatory features of macrophages. Based on our review, we believe that targeting macrophage phenotypes is a viable and promising strategy for treating lung diseases.
Assuntos
Pneumopatias , Macrófagos , Humanos , Macrófagos/metabolismo , Fenótipo , Transdução de Sinais , Pneumopatias/metabolismo , Ativação de MacrófagosRESUMO
The trans-cleavage property of CRISPR-Cas12a system makes it an excellent tool for disease diagnosis. Nevertheless, most methods based on CRISPR-Cas system still require pre-amplification of the target to achieve the desired detection sensitivity. Here we generate Framework-Hotspot reporters (FHRs) with different local densities to investigate their effect on trans-cleavage activity of Cas12a. We find that the cleavage efficiency increases and the cleavage rate accelerates with increasing reporter density. We further construct a modular sensing platform with CRISPR-Cas12a-based target recognition and FHR-based signal transduction. Encouragingly, this modular platform enables sensitive (100â fM) and rapid (<15â min) detection of pathogen nucleic acids without pre-amplification, as well as detection of tumor protein markers in clinical samples. The design provides a facile strategy for enhanced trans cleavage of Cas12a, which accelerates and broadens its applications in biosensing.
Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Biomarcadores Tumorais , Transdução de SinaisRESUMO
BACKGROUND: Staphylococcal cassette chromosome mec (SCCmec) elements are highly diverse and have been classified into 14 types. Novel SCCmec variants have been frequently detected from humans and animals but rarely from food. OBJECTIVES: To characterize a novel SCCmec type and two SCCmec variants identified from food-associated MRSA in China. METHODS: Three MRSA (NV_1, NT_611 and NT_8) collected from retail foods in China were subjected to WGS and the SCCmec elements were determined. RESULTS: The novel SCCmecXV identified in NV_1 carried the mec gene complex class A (mecI-mecR1-mecA-IS431) and the ccr gene complex 7 (ccrA1B6), and a Tn558-mediated phenicol exporter gene fexA was detected in this SCCmecXV cassette. The pseudo-SCCmec elements ΨSCCmecNT_611 and ΨSCCmecNT_8 showed a truncated SCCmec pattern, carrying the class C2 mec gene complex but missing the ccr genes. The ΨSCCmecNT_611 element shared more similarities with those of Staphylococcus haemolyticus (AB478934.1) and carried a heavy metal resistance gene cluster cadD-cadX-arsC-arsB-arsR-copA. The ΨSCCmecNT_8 MRSA exhibited a highly resistant phenotype, showing the absence of a 19.3 kb segment compared with the reference SCCmecXII element (CP019945.1). Notably, a 46 kb region containing multiple transposons encoding antimicrobial or metal resistance genes flanked by IS431 or IS256 was identified â¼30 kb downstream from the mec gene complex in ΨSCCmecNT_8, which might explain such high resistance in MRSA NT_8. CONCLUSIONS: Our finding of novel and pseudo-SCCmec elements reflected the ongoing intra/interspecies genetic rearrangements in staphylococci. Further study will be needed to investigate the biological significance and prevalence of those SCCmec variants along the food chain.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/epidemiologia , Staphylococcus/genéticaRESUMO
Pseudorabies virus (PRV), also known as suid Alphaherpesvirus 1 (SuHV-1), which is one of the most devastating infectious pathogen of swine industry worldwide. Vaccination is the safest and most effective PRV prevention and control strategy. B cell receptor (BCR) is membrane-bound immunoglobulin located on the surface of B cells capable of specifically binding foreign antigens, which is one of the most important molecules regulating the proliferation and function of B cells. Here, to assess the molecular diversity of BCR H-CDR3 repertoire after different PRV strains infection, we detected the IGHV, IGHD, IGHJ genes usage and CDR3 sequence changes of mice spleen with PRV vaccine strain (Bartha-K61), variant strain (XJ) and mock infection by high-throughput sequencing. We found that PRV-infected groups shared partial BCR sequences, which are most likely to be PRV-specific BCR candidates. However, there were still differences in the IGHV genes usage as well as the combined usage of IGHV and IGHJ genes between the Bartha-K61 strain and XJ strain infection groups. In addition, the CDR3 sequences exhibited large differences in the types and lengths in PRV infection groups. Our study contributes to a better understanding of the host adaptive immune response to PRV infection and provides a theoretical basis for further research on novel and efficient PRV vaccines in the future.
Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Roedores , Doenças dos Suínos , Animais , Herpesvirus Suídeo 1/genética , Camundongos , Vacinas contra Pseudorraiva , Receptores de Antígenos de Linfócitos B/genética , Baço , SuínosRESUMO
The epidemiological investigation and laboratory-based confirmation were performed on samples from a family botulism outbreak in Zhangjiakou, Hebei province, China. Forty-four samples, including 14 samples (leftover food, and swabs taken of both food packaging bags and dishes, and serum and vomitus of the victims) related to outbreak and 30 causative food products after outbreak, were collected and analyzed. Isolation, bacterial identification, toxin detection, and whole-genome sequencing of Clostridium spp. cultured from the latter samples and animal assays were performed. Mice injected with the cultures of the leftover chili chicken feet, together with the inner layer of its packaging bag, the plate for serving it, and supernatant of two patients' serum that demonstrated the typical signs of botulism. The polyvalent anti-botulinum neurotoxin (BoNT) and the monovalent anti-BoNT/E exhibited protective effects when administered to mice. Three Clostridium botulinum cultures were obtained and verified to be positive for BoNT/E. The whole genome analysis of the isolates revealed that the classic bont/e gene orfX cluster was found to be located on the chromosomes of all three isolates. Single nucleotide polymorphism analysis suggested that these might be from the same source. Our findings indicated that this botulism outbreak occurred following the ingestion of vacuum-packed chili chicken feet contaminated with BoNT/E produced by C. botulinum.
Assuntos
Botulismo , Clostridium botulinum , Animais , Botulismo/epidemiologia , Botulismo/veterinária , Galinhas , Clostridium botulinum/genética , Surtos de Doenças , Extremidades , Camundongos , VácuoRESUMO
Interferons (IFNs) play a major role in the host's antiviral innate immunity. In response to viral infection, IFNs bind their receptors and initiate a signaling cascade, leading to the accurate transcriptional regulation of hundreds of IFN-stimulated genes (ISGs). Porcine rotavirus (PoRV) belongs to genus Rotavirus of the Reoviridae family; the infection is a global epidemic disease and a major threat to the pig industry. In this study, we found that IFN-λ3 inhibited the replication of PoRV in both MA104 cells and IPEC-J2 cells, and this inhibition was dose-dependent. Furthermore, the antiviral activity of IFN-λ3 was more potent in IPEC-J2 cells than in MA104 cells. Further research showed that IFN-λ3 and IFN-α might inhibit PoRV infection by activating ISGs, i.e., MxA, OASL and ISG15, in IPEC-J2 cells. However, the co-treatment of IFN-λ3 and IFN-α did not enhance the antiviral activity. Our data demonstrated that IFN-λ3 had antiviral activity against PoRV and may serve as a useful antiviral candidate against PoRV, as well as other viruses in swine.
Assuntos
Rotavirus , Animais , Antivirais/farmacologia , Linhagem Celular , Interferon-alfa/farmacologia , Interferons/farmacologia , SuínosRESUMO
OBJECTIVES: This study aimed to characterize the genomic features of a Salmonella enterica serovar Typhimurium ST34 isolate, CFSA629, which carried a novel mcr-1 variant, designated as mcr-1.19, mapped to an ESBL-encoding IncHI2 plasmid. METHODS: Antimicrobial susceptibility assays as well as WGS were carried out on isolate CFSA629. The complete closed genome was obtained and then explored to obtain genomic features. Plasmid sequence comparison was performed for pCFSA629 with similar plasmids and the mcr-1 genetic environment was analysed. RESULTS: S. Typhimurium ST34 CFSA629 expressed an MDR phenotype to six classes of compound and consisted of a single circular chromosome and one plasmid. It possessed 11 resistance genes including 2 ESBL genes that mapped to the chromosome and the plasmid; an IS26-flanked composite-like transposon was identified. A novel mcr-1 variant (mcr-1.19) was identified, which had a unique SNP (G1534A) that gave rise to a novel MCR-1 protein containing a Val512Ile amino acid substitution. Plasmid pCFSA629 possessed a conjugative plasmid transfer gene cluster as well as an antimicrobial resistance-encoding gene cluster-containing region that contained two IS26 composite-like transposonal modules, but was devoid of any plasmid-mediated quinolone resistance genes. The background of mcr-1.19 consisted of an ISApl1-mcr-1-PAP2-ter module. CONCLUSIONS: We report on an MDR S. Typhimurium ST34 CFSA629 isolate cultured from egg in China, harbouring an mcr-1.19 variant mapped to an IncHI2 plasmid. This highlights the importance of surveillance to mitigate dissemination of mcr-encoding genes among foodborne Salmonella. Improved surveillance is important for tackling the dissemination of mcr genes among foodborne Salmonella around the world.
Assuntos
Salmonella enterica , Salmonella typhimurium , Antibacterianos/farmacologia , China , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Salmonella typhimurium/genética , SorogrupoRESUMO
BACKGROUND: Hemodialysis patients, who are often excluded from cardiovascular (CV) clinical trials, are associated with higher CV morbidity and mortality. The risk stratification scheme for these patients is lacking. Therefore, this investigation examined the independent CV prognostic value of high-sensitive cardiac troponin T (hs-cTnT) and added prognostic value over echocardiographic parameters and other clinical risk predictors in asymptomatic stable maintenance hemodialysis (MHD) patients. METHODS: 181 patients with end-stage renal disease undergoing MHD were eligible from the dialysis center of Tongren Hospital, Shanghai Jiao Tong University School of Medicine between October 2017 and September 2018. These patients were followed until September 2020 or until death. The median follow-up was 31 (IQR: 21-33) months. Outcome measures were all-cause mortality, first fatal or nonfatal CV events (CVEs), and 4-point composite major adverse CVEs (MACE). We performed multivariable Cox regression analysis using demographic, clinical, laboratory, and echocardiographic data to identify predictors of CV outcomes. We also evaluated the increased discriminative value associated with the addition of echocardiographic parameters and hs-cTnT using net reclassification improvement (NRI) and integrated discrimination improvement (IDI). RESULTS: During follow-up, 37 patients died, 84 patients suffered one or more CVEs, and 78 patients developed 4-point MACE. In univariable analyses, age, dialysis vintage, diastolic blood pressure, parathyroid hormone concentrations, hs-cTnT, B-type natriuretic peptide, left ventricular mass index (LVMI), and E/E' predicted all end points. hs-cTnT remained a strong predictor for each end point in multivariate analysis, whereas LVMI and E/E' did not. The addition of hs-cTnT on top of clinical and echocardiographic variables was associated with improvements in reclassification for CVEs (NRI = 44.6% [15.9-74.3%], IDI = 15.9% [5.7-31.0%], all p < 0.001), all-cause mortality (NRI = 35.5% [10.1-50.2%], p < 0.001, IDI = 4.4% [1.3-8.5%], p = 0.005), and 4-point MACE (NRI = 47.2% [16.1-64.9%], p < 0.001, IDI = 16.9% [5.5-37.3%], p = 0.005). Adding echocardiographic variables on top of clinical variables and hs-cTnT was not associated with significant improvements in NRI and IDI (all p > 0.05). CONCLUSIONS: Our data suggest that hs-cTnT is a powerful independent predictor of CV outcome and all-cause mortality in stable MHD patients. The additional use of echocardiography for improvement of risk stratification is not supported by our results.
Assuntos
Doenças Cardiovasculares/sangue , Falência Renal Crônica/terapia , Diálise Renal , Troponina T/sangue , Idoso , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/etiologia , Feminino , Humanos , Falência Renal Crônica/sangue , Falência Renal Crônica/complicações , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Fatores de Risco , Análise de SobrevidaRESUMO
Hepatitis E virus (HEV) is a biological hazard that must be controlled and is a recognized etiological agent in viral hepatitis. This is a zoonotic virus and can be transmitted through the fecal-oral route. The pig is an important reservoir host of HEV, and is a source of contamination for the consumer after the consumption of raw or undercooked pork products. When detected, the most prevalent genotype of HEV in China is genotype 4 (denoted as HEV-4). To ensure the safety of this food of animal origin, we undertook a survey of HEV contamination in pig livers and pork samples available for sale, in retail outlets in selected cities in China. Viral RNA was purified from samples collected by lysing in Trizol followed by purification using trichloromethane and virus RNA extract kit. An additional step was applied to improve the recovery rate by adding RNase OUT when extracting virus RNA from pig livers, and the RNA productions were washed in 75% (v/v) ethanol to remove inhibitors. In total, 158 pig livers and 80 pork samples were procured and analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). After purification of total RNA from all samples taken and analyzed by RT-qPCR, a single pig liver was positive by this method for HEV. The positive rate was calculated as 0.63%. In this study, a single positive sample was detected. Considering the dietary habits of Chinese people, pork is a popular food that on occasion may be contaminated with HEV, thereby posing a threat to consumer health. Ongoing surveillance is required to assess the risk to human health arising from HEV-contaminated pork being offered for sale, at retail outlets, especially in the areas of China where pig production is practiced.
Assuntos
Vírus da Hepatite E/isolamento & purificação , Hepatite E/veterinária , Produtos da Carne/virologia , Carne de Porco/virologia , Doenças dos Suínos/epidemiologia , Animais , China/epidemiologia , Cidades/epidemiologia , Microbiologia de Alimentos , Genótipo , Hepatite E/epidemiologia , Hepatite E/virologia , Vírus da Hepatite E/genética , Fígado/virologia , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Suínos , Doenças dos Suínos/virologiaRESUMO
Intracellular DNA-based hybridization reactions generally occur under tension rather than in free states, which are spatiotemporally controlled in physiological conditions. However, how nanomechanical forces affect DNA hybridization efficiencies in in-vitro DNA assays, for example, biosensors or biochips, remains largely elusive. Here, we design DNA framework-based nanomechanical handles that can control the stretching states of DNA molecules. Using a pair of tetrahedral DNA framework (TDF) nanostructured handles, we develop bridge DNA sensors that can capture target DNA with ultrafast speed and high efficiency. We find that the rigid TDF handles bind two ends of a single-stranded DNA (ssDNA) and hold it in a stretched state, with an apparent stretching length comparable to its counterpart of double-stranded DNA (dsDNA) via atomic force microscopy measurement. The DNA stretching effect of ssDNA is then monitored using single-molecule fluorescence energy transfer (FRET), resulting in decreased FRET efficiency in the stretched ssDNA. By controlling the stretching state of ssDNA, we obtained significantly improved hybridization kinetics (within 1 min) and hybridization efficiency (â¼98%) under the target concentration of 500 nM. The bridge DNA sensors demonstrated high sensitivity (1 fM), high specificity (single mismatch mutation discrimination), and high selectivity (suitable for the detection in serum and blood) under the target concentration of 10 nM. Controlling the stretching state of ssDNA shows great potential in biosensors, bioimaging, and biochips applications.