Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Opt Express ; 32(10): 17667-17688, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858944

RESUMO

We propose a high-resolution, broad-spectral-range spatial heterodyne Raman spectrometer (SHRS) having separate filters and multi-gratings (SFMG). A prototype of the SFMG-SHRS is built using multi-gratings with four sub-gratings having groove densities of 320, 298, 276, and 254 gr/mm and separate filters with filter bands corresponding to the sub-gratings. We use the SFMG-SHRS to measure the Raman spectra of inorganic and organic compounds with various integration times, laser power, and transparent containers, compare measurements of microplastics with and without the separate filters, and measure mixtures of inorganic powders and organic solutions. The designed SFMG-SHRS makes high-resolution, broad-spectral-range Raman measurements with improved signal-to-noise ratios and visibility of weak Raman peaks even in the presence of fluorescence.

2.
Opt Express ; 32(10): 17819-17836, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858953

RESUMO

We propose a spatial heterodyne Raman spectrometer (SHRS) based on a field-widened grating-echelle (FWGE). A normal grating is combined with an echelle grating in a conventional spatial heterodyne spectrometer to eliminate ghost images without using masks, and prevents interference among the spatial frequencies of different diffraction orders. Mathematical expressions and derivation processes are given for the spectral parameters in the FWGE-SHRS and a verification breadboard system is fabricated. The FWGE-SHRS measures Raman spectra of single chemicals and mixed targets with different integration times, laser powers, concentrations, and transparent containers. The results of the experiments demonstrate that the FWGE-SHRS is suitable for high-resolution, broadband Raman measurements for a wide range of applications.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124099, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513421

RESUMO

Microplastic pollution has become a global environmental problem that cannot be ignored. Raman spectroscopy has been widely used for microplastics detection because it can be performed in real-time and is non-destructive. Conventional detection techniques have had weak signals and low signal-to-noise ratios (SNR). Here, an efficient and reliable detection method is demonstrated. Specifically, a confocal microscope combined with an echelle-grating spatial-heterodyne Raman spectrometer (CM-ESHRS) was constructed. The confocal microscopy and the characteristics of the echelle grating enabled high optical throughput, high SNR, high spectral resolution, and a wide spectral detection band. After spectral calibration, the resolution approached 0.67 cm-1, moreover, the spectral detection range for a single order was 1372.16 cm-1. We detected and analyzed nineteen kinds of microplastics, such as polyamide, polypropylene, and polymethylmethacrylate, and the main vibrational spectral bands were categorized. Compared with commercial dispersive spectrometers, CM-ESHRS has a higher optical throughput. In addition, we examined microplastics with various particle sizes, microplastics mixed in flour, and microplastic particles of different materials under mixed conditions, all of which yielded complete spectral information. Overall, CM-ESHRS exhibits good potential applications for the detection of microplastics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA