Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 173(3): 749-761.e38, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29606352

RESUMO

Coexpression of proteins in response to pathway-inducing signals is the founding paradigm of gene regulation. However, it remains unexplored whether the relative abundance of co-regulated proteins requires precise tuning. Here, we present large-scale analyses of protein stoichiometry and corresponding regulatory strategies for 21 pathways and 67-224 operons in divergent bacteria separated by 0.6-2 billion years. Using end-enriched RNA-sequencing (Rend-seq) with single-nucleotide resolution, we found that many bacterial gene clusters encoding conserved pathways have undergone massive divergence in transcript abundance and architectures via remodeling of internal promoters and terminators. Remarkably, these evolutionary changes are compensated post-transcriptionally to maintain preferred stoichiometry of protein synthesis rates. Even more strikingly, in eukaryotic budding yeast, functionally analogous proteins that arose independently from bacterial counterparts also evolved to convergent in-pathway expression. The broad requirement for exact protein stoichiometries despite regulatory divergence provides an unexpected principle for building biological pathways both in nature and for synthetic activities.


Assuntos
Enzimas/química , Escherichia coli/enzimologia , Evolução Molecular , Isoformas de Proteínas/química , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Família Multigênica , Óperon , Filogenia , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Ribossomos/química , Análise de Sequência de RNA , Transcriptoma
2.
Cell ; 157(3): 624-35, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766808

RESUMO

Quantitative views of cellular functions require precise measures of rates of biomolecule production, especially proteins-the direct effectors of biological processes. Here, we present a genome-wide approach, based on ribosome profiling, for measuring absolute protein synthesis rates. The resultant E. coli data set transforms our understanding of the extent to which protein synthesis is precisely controlled to optimize function and efficiency. Members of multiprotein complexes are made in precise proportion to their stoichiometry, whereas components of functional modules are produced differentially according to their hierarchical role. Estimates of absolute protein abundance also reveal principles for optimizing design. These include how the level of different types of transcription factors is optimized for rapid response and how a metabolic pathway (methionine biosynthesis) balances production cost with activity requirements. Our studies reveal how general principles, important both for understanding natural systems and for synthesizing new ones, emerge from quantitative analyses of protein synthesis.


Assuntos
Escherichia coli/metabolismo , Biossíntese de Proteínas , Proteínas de Bactérias/metabolismo , Estudo de Associação Genômica Ampla , Metionina/biossíntese , Complexos Multiproteicos/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
3.
Cell ; 155(7): 1479-91, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24360272

RESUMO

The spatiotemporal organization and dynamics of chromatin play critical roles in regulating genome function. However, visualizing specific, endogenous genomic loci remains challenging in living cells. Here, we demonstrate such an imaging technique by repurposing the bacterial CRISPR/Cas system. Using an EGFP-tagged endonuclease-deficient Cas9 protein and a structurally optimized small guide (sg) RNA, we show robust imaging of repetitive elements in telomeres and coding genes in living cells. Furthermore, an array of sgRNAs tiling along the target locus enables the visualization of nonrepetitive genomic sequences. Using this method, we have studied telomere dynamics during elongation or disruption, the subnuclear localization of the MUC4 loci, the cohesion of replicated MUC4 loci on sister chromatids, and their dynamic behaviors during mitosis. This CRISPR imaging tool has potential to significantly improve the capacity to study the conformation and dynamics of native chromosomes in living human cells.


Assuntos
Técnicas Genéticas , Telômero , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Mitose , Dados de Sequência Molecular , Mucina-4/genética
4.
Cell ; 151(5): 1042-54, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23178123

RESUMO

The conserved transcriptional regulator heat shock factor 1 (Hsf1) is a key sensor of proteotoxic and other stress in the eukaryotic cytosol. We surveyed Hsf1 activity in a genome-wide loss-of-function library in Saccaromyces cerevisiae as well as ~78,000 double mutants and found Hsf1 activity to be modulated by highly diverse stresses. These included disruption of a ribosome-bound complex we named the Ribosome Quality Control Complex (RQC) comprising the Ltn1 E3 ubiquitin ligase, two highly conserved but poorly characterized proteins (Tae2 and Rqc1), and Cdc48 and its cofactors. Electron microscopy and biochemical analyses revealed that the RQC forms a stable complex with 60S ribosomal subunits containing stalled polypeptides and triggers their degradation. A negative feedback loop regulates the RQC, and Hsf1 senses an RQC-mediated translation-stress signal distinctly from other stresses. Our work reveals the range of stresses Hsf1 monitors and elucidates a conserved cotranslational protein quality control mechanism.


Assuntos
Complexos Multiproteicos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico/genética , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína com Valosina
5.
PLoS Genet ; 20(9): e1011100, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39241085

RESUMO

Pseudouridine (Ψ) is an ubiquitous RNA modification, present in the tRNAs and rRNAs of species across all domains of life. Conserved pseudouridine synthases modify the mRNAs of diverse eukaryotes, but the modification has yet to be identified in bacterial mRNAs. Here, we report the discovery of pseudouridines in mRNA from E. coli. By testing the mRNA modification capacity of all 11 known pseudouridine synthases, we identify RluA as the predominant mRNA-modifying enzyme. RluA, a known tRNA and 23S rRNA pseudouridine synthase, modifies at least 31 of the 44 high-confidence sites we identified in E. coli mRNAs. Using RNA structure probing data to inform secondary structures, we show that the target sites of RluA occur in a common sequence and structural motif comprised of a ΨURAA sequence located in the loop of a short hairpin. This recognition element is shared with previously identified target sites of RluA in tRNAs and rRNA. Overall, our work identifies pseudouridine in key mRNAs and suggests the capacity of Ψ to regulate the transcripts that contain it.

6.
Annu Rev Microbiol ; 75: 243-267, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343023

RESUMO

Bacterial protein synthesis rates have evolved to maintain preferred stoichiometries at striking precision, from the components of protein complexes to constituents of entire pathways. Setting relative protein production rates to be well within a factor of two requires concerted tuning of transcription, RNA turnover, and translation, allowing many potential regulatory strategies to achieve the preferred output. The last decade has seen a greatly expanded capacity for precise interrogation of each step of the central dogma genome-wide. Here, we summarize how these technologies have shaped the current understanding of diverse bacterial regulatory architectures underpinning stoichiometric protein synthesis. We focus on the emerging expanded view of bacterial operons, which encode diverse primary and secondary mRNA structures for tuning protein stoichiometry. Emphasis is placed on how quantitative tuning is achieved. We discuss the challenges and open questions in the application of quantitative, genome-wide methodologies to the problem of precise protein production.


Assuntos
Escherichia coli , Óperon , Escherichia coli/genética , Biossíntese de Proteínas , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Transcrição Gênica
7.
Nature ; 585(7823): 124-128, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32848247

RESUMO

Tight coupling of transcription and translation is considered a defining feature of bacterial gene expression1,2. The pioneering ribosome can both physically associate and kinetically coordinate with RNA polymerase (RNAP)3-11, forming a signal-integration hub for co-transcriptional regulation that includes translation-based attenuation12,13 and RNA quality control2. However, it remains unclear whether transcription-translation coupling-together with its broad functional consequences-is indeed a fundamental characteristic of bacteria other than Escherichia coli. Here we show that RNAPs outpace pioneering ribosomes in the Gram-positive model bacterium Bacillus subtilis, and that this 'runaway transcription' creates alternative rules for both global RNA surveillance and translational control of nascent RNA. In particular, uncoupled RNAPs in B. subtilis explain the diminished role of Rho-dependent transcription termination, as well as the prevalence of mRNA leaders that use riboswitches and RNA-binding proteins. More broadly, we identified widespread genomic signatures of runaway transcription in distinct phyla across the bacterial domain. Our results show that coupled RNAP-ribosome movement is not a general hallmark of bacteria. Instead, translation-coupled transcription and runaway transcription constitute two principal modes of gene expression that determine genome-specific regulatory mechanisms in prokaryotes.


Assuntos
Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , Transcrição Gênica , Regiões 5' não Traduzidas/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Filogenia , RNA Bacteriano/biossíntese , RNA Bacteriano/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator Rho/metabolismo , Ribossomos/metabolismo , Riboswitch/genética
8.
Mol Cell ; 70(2): 274-286.e7, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29628307

RESUMO

Temperature influences the structural and functional properties of cellular components, necessitating stress responses to restore homeostasis following temperature shift. Whereas the circuitry controlling the heat shock response is well understood, that controlling the E. coli cold shock adaptation program is not. We found that during the growth arrest phase (acclimation) that follows shift to low temperature, protein synthesis increases, and open reading frame (ORF)-wide mRNA secondary structure decreases. To identify the regulatory system controlling this process, we screened for players required for increased translation. We identified a two-member mRNA surveillance system that enables recovery of translation during acclimation: RNase R assures appropriate mRNA degradation and the Csps dynamically adjust mRNA secondary structure to globally modulate protein expression level. An autoregulatory switch in which Csps tune their own expression to cellular demand enables dynamic control of global translation. The universality of Csps in bacteria suggests broad utilization of this control mechanism.


Assuntos
Temperatura Baixa , Resposta ao Choque Frio , Escherichia coli/genética , RNA Bacteriano/genética , RNA Mensageiro/genética , Regiões 5' não Traduzidas , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade
9.
Microbiology (Reading) ; 170(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38602388

RESUMO

Since the 1980s, chromosome-integration vectors have been used as a core method of engineering Bacillus subtilis. One of the most frequently used vector backbones contains chromosomally derived regions that direct homologous recombination into the amyE locus. Here, we report a gap in the homology region inherited from the original amyE integration vector, leading to erroneous recombination in a subset of transformants and a loss-of-function mutation in the downstream gene. Internal to the homology arm that spans the 3' portion of amyE and the downstream gene ldh, an unintentional 227 bp deletion generates two crossover events. The major event yields the intended genotype, but the minor event, occurring in ~10 % of colonies, results in a truncation of ldh, which encodes lactate dehydrogenase. Although both types of colonies test positive for amyE disruption by starch plating, the potential defect in fermentative metabolism may be left undetected and confound the results of subsequent experiments.


Assuntos
Bacillus subtilis , Cromossomos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Mutação , Deleção de Sequência
10.
Nucleic Acids Res ; 50(9): 5029-5046, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35524564

RESUMO

Bacterial mRNAs have short life cycles, in which transcription is rapidly followed by translation and degradation within seconds to minutes. The resulting diversity of mRNA molecules across different life-cycle stages impacts their functionality but has remained unresolved. Here we quantitatively map the 3' status of cellular RNAs in Escherichia coli during steady-state growth and report a large fraction of molecules (median>60%) that are fragments of canonical full-length mRNAs. The majority of RNA fragments are decay intermediates, whereas nascent RNAs contribute to a smaller fraction. Despite the prevalence of decay intermediates in total cellular RNA, these intermediates are underrepresented in the pool of ribosome-associated transcripts and can thus distort quantifications and differential expression analyses for the abundance of full-length, functional mRNAs. The large heterogeneity within mRNA molecules in vivo highlights the importance in discerning functional transcripts and provides a lens for studying the dynamic life cycle of mRNAs.


Assuntos
Escherichia coli , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma , Escherichia coli/genética , Escherichia coli/metabolismo , Estabilidade de RNA , Ribossomos/genética , Ribossomos/metabolismo
11.
RNA ; 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927010

RESUMO

Sigma factors are an important class of bacterial transcription factors that lend specificity to RNA polymerases by binding to distinct promoter elements for genes in their regulons. Here we show that activation of the general stress sigma factor, σB, in Bacillus subtilis paradoxically leads to dramatic induction of translation for a subset of its regulon genes. These genes are translationally repressed when transcribed by the housekeeping sigma factor, σA, owing to extended RNA secondary structures as determined in vivo using DMS-MaPseq. Transcription from σB-dependent promoters ablates the secondary structures and activates translation, leading to dual induction. Translation efficiencies between σB- and σA-dependent RNA isoforms can vary by up to 100-fold, which in multiple cases exceeds the magnitude of transcriptional induction. These results highlight the role of long-range RNA folding in modulating translation and demonstrate that a transcription factor can regulate protein synthesis beyond its effects on transcript levels.

12.
Mol Syst Biol ; 17(4): e10302, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33900014

RESUMO

During steady-state cell growth, individual enzymatic fluxes can be directly inferred from growth rate by mass conservation, but the inverse problem remains unsolved. Perturbing the flux and expression of a single enzyme could have pleiotropic effects that may or may not dominate the impact on cell fitness. Here, we quantitatively dissect the molecular and global responses to varied expression of translation termination factors (peptide release factors, RFs) in the bacterium Bacillus subtilis. While endogenous RF expression maximizes proliferation, deviations in expression lead to unexpected distal regulatory responses that dictate fitness reduction. Molecularly, RF depletion causes expression imbalance at specific operons, which activates master regulators and detrimentally overrides the transcriptome. Through these spurious connections, RF abundances are thus entrenched by focal points within the regulatory network, in one case located at a single stop codon. Such regulatory entrenchment suggests that predictive bottom-up models of expression-fitness landscapes will require near-exhaustive characterization of parts.


Assuntos
Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Terminação de Peptídeos/metabolismo , Biossíntese de Proteínas , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas/genética , Genoma Bacteriano , Proteoma/metabolismo , Estresse Fisiológico/genética , Transcrição Gênica
13.
Mol Syst Biol ; 17(5): e9536, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34032011

RESUMO

Accurate measurements of cellular protein concentrations are invaluable to quantitative studies of gene expression and physiology in living cells. Here, we developed a versatile mass spectrometric workflow based on data-independent acquisition proteomics (DIA/SWATH) together with a novel protein inference algorithm (xTop). We used this workflow to accurately quantify absolute protein abundances in Escherichia coli for > 2,000 proteins over > 60 growth conditions, including nutrient limitations, non-metabolic stresses, and non-planktonic states. The resulting high-quality dataset of protein mass fractions allowed us to characterize proteome responses from a coarse (groups of related proteins) to a fine (individual) protein level. Hereby, a plethora of novel biological findings could be elucidated, including the generic upregulation of low-abundant proteins under various metabolic limitations, the non-specificity of catabolic enzymes upregulated under carbon limitation, the lack of large-scale proteome reallocation under stress compared to nutrient limitations, as well as surprising strain-dependent effects important for biofilm formation. These results present valuable resources for the systems biology community and can be used for future multi-omics studies of gene regulation and metabolic control in E. coli.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteômica/métodos , Algoritmos , Técnicas Bacteriológicas , Escherichia coli/metabolismo , Espectrometria de Massas , Estresse Fisiológico , Biologia de Sistemas , Fluxo de Trabalho
14.
Proc Natl Acad Sci U S A ; 115(24): E5585-E5594, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29794222

RESUMO

Endonucleolytic cleavage within polycistronic mRNAs can lead to differential stability, and thus discordant abundance, among cotranscribed genes. RNase Y, the major endonuclease for mRNA decay in Bacillus subtilis, was originally identified for its cleavage activity toward the cggR-gapA operon, an event that differentiates the synthesis of a glycolytic enzyme from its transcriptional regulator. A three-protein Y-complex (YlbF, YmcA, and YaaT) was recently identified as also being required for this cleavage in vivo, raising the possibility that it is an accessory factor acting to regulate RNase Y. However, whether the Y-complex is broadly required for RNase Y activity is unknown. Here, we used end-enrichment RNA sequencing (Rend-seq) to globally identify operon mRNAs that undergo maturation posttranscriptionally by RNase Y and the Y-complex. We found that the Y-complex is required for the majority of RNase Y-mediated mRNA maturation events and also affects riboswitch abundance in B. subtilis In contrast, noncoding RNA maturation by RNase Y often does not require the Y-complex. Furthermore, deletion of RNase Y has more pleiotropic effects on the transcriptome and cell growth than deletions of the Y-complex. We propose that the Y-complex is a specificity factor for RNase Y, with evidence that its role is conserved in Staphylococcus aureus.


Assuntos
Bacillus subtilis/metabolismo , Endorribonucleases/metabolismo , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Óperon/fisiologia , Processamento Pós-Transcricional do RNA/fisiologia , RNA não Traduzido/metabolismo , Staphylococcus aureus/metabolismo , Transcriptoma/fisiologia
15.
RNA ; 24(9): 1133-1143, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29925569

RESUMO

In many bacteria, ribosomal proteins autogenously repress their own expression by interacting with RNA structures typically located in the 5'-UTRs of their mRNA transcripts. This regulation is necessary to maintain a balance between ribosomal proteins and rRNA to ensure proper ribosome production. Despite advances in noncoding RNA discovery and validation of RNA-protein regulatory interactions, the selective pressures that govern the formation and maintenance of such RNA cis-regulators in the context of an organism remain largely undetermined. To examine the impact disruptions to this regulation have on bacterial fitness, we introduced point mutations that abolish ribosomal protein binding and regulation into the RNA structure that controls expression of ribosomal proteins L20 and L35 within the Bacillus subtilis genome. Our studies indicate that removing this regulation results in reduced log phase growth, improper rRNA maturation, and the accumulation of a kinetically trapped or misassembled ribosomal particle at low temperatures, suggesting defects in ribosome synthesis. Such work emphasizes the important role regulatory RNAs play in the stoichiometric production of ribosomal components for proper ribosome composition and overall organism viability and reinforces the potential of targeting ribosomal protein production and ribosome assembly with novel antimicrobials.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Mutação Puntual , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Aptidão Genética , Viabilidade Microbiana , Conformação de Ácido Nucleico , Ligação Proteica , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética
16.
Proc Natl Acad Sci U S A ; 114(29): E5969-E5978, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28674000

RESUMO

Staphylococcus aureus is a leading cause of both nosocomial and community-acquired infection. Biofilm formation at the site of infection reduces antimicrobial susceptibility and can lead to chronic infection. During biofilm formation, a subset of cells liberate cytoplasmic proteins and DNA, which are repurposed to form the extracellular matrix that binds the remaining cells together in large clusters. Using a strain that forms robust biofilms in vitro during growth under glucose supplementation, we carried out a genome-wide screen for genes involved in the release of extracellular DNA (eDNA). A high-density transposon insertion library was grown under biofilm-inducing conditions, and the relative frequency of insertions was compared between genomic DNA (gDNA) collected from cells in the biofilm and eDNA from the matrix. Transposon insertions into genes encoding functions necessary for eDNA release were identified by reduced representation in the eDNA. On direct testing, mutants of some of these genes exhibited markedly reduced levels of eDNA and a concomitant reduction in cell clustering. Among the genes with robust mutant phenotypes were gdpP, which encodes a phosphodiesterase that degrades the second messenger cyclic-di-AMP, and xdrA, the gene for a transcription factor that, as revealed by RNA-sequencing analysis, influences the expression of multiple genes, including many involved in cell wall homeostasis. Finally, we report that growth in biofilm-inducing medium lowers cyclic-di-AMP levels and does so in a manner that depends on the gdpP phosphodiesterase gene.


Assuntos
Biofilmes , DNA Bacteriano/genética , Genes Bacterianos , Staphylococcus aureus/fisiologia , Parede Celular/genética , Parede Celular/metabolismo , Vermelho Congo/farmacologia , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Genômica/métodos , Mutação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Virulência/genética
17.
J Bacteriol ; 201(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31285239

RESUMO

Expression of motility genes is a potentially beneficial but costly process in bacteria. Interestingly, many isolate strains of Escherichia coli possess motility genes but have lost the ability to activate them under conditions in which motility is advantageous, raising the question of how they respond to these situations. Through transcriptome profiling of strains in the E. coli single-gene knockout Keio collection, we noticed drastic upregulation of motility genes in many of the deletion strains compared to levels in their weakly motile parent strain (BW25113). We show that this switch to a motile phenotype is not a direct consequence of the genes deleted but is instead due to a variety of secondary mutations that increase the expression of the major motility regulator, FlhDC. Importantly, we find that this switch can be reproduced by growing poorly motile E. coli strains in nonshaking liquid medium overnight but not in shaking liquid medium. Individual isolates after the nonshaking overnight incubations acquired distinct mutations upstream of the flhDC operon, including different insertion sequence (IS) elements and, to a lesser extent, point mutations. The rapidity with which genetic changes sweep through the populations grown without shaking shows that poorly motile strains can quickly adapt to a motile lifestyle by genetic rewiring.IMPORTANCE The ability to tune gene expression in times of need outside preordained regulatory networks is an essential evolutionary process that allows organisms to survive and compete. Here, we show that upon overnight incubation in liquid medium without shaking, populations of largely nonmotile Escherichia coli bacteria can rapidly accumulate mutants that have constitutive motility. This effect contributes to widespread secondary mutations in the single-gene knockout library, the Keio collection. As a result, 49/71 (69%) of the Keio strains tested exhibited various degrees of motility, whereas their parental strain is poorly motile. These observations highlight the plasticity of gene expression even in the absence of preexisting regulatory programs and should raise awareness of procedures for handling laboratory strains of E. coli.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/fisiologia , Perfilação da Expressão Gênica/métodos , Mutação , Técnicas Bacteriológicas/instrumentação , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Óperon , Fenótipo , Transativadores/genética
18.
Proc Natl Acad Sci U S A ; 113(44): E6859-E6867, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791168

RESUMO

Progression of the Caulobacter cell cycle requires temporal and spatial control of gene expression, culminating in an asymmetric cell division yielding distinct daughter cells. To explore the contribution of translational control, RNA-seq and ribosome profiling were used to assay global transcription and translation levels of individual genes at six times over the cell cycle. Translational efficiency (TE) was used as a metric for the relative rate of protein production from each mRNA. TE profiles with similar cell cycle patterns were found across multiple clusters of genes, including those in operons or in subsets of operons. Collections of genes associated with central cell cycle functional modules (e.g., biosynthesis of stalk, flagellum, or chemotaxis machinery) have consistent but different TE temporal patterns, independent of their operon organization. Differential translation of operon-encoded genes facilitates precise cell cycle-timing for the dynamic assembly of multiprotein complexes, such as the flagellum and the stalk and the correct positioning of regulatory proteins to specific cell poles. The cell cycle-regulatory pathways that produce specific temporal TE patterns are separate from-but highly coordinated with-the transcriptional cell cycle circuitry, suggesting that the scheduling of translational regulation is organized by the same cyclical regulatory circuit that directs the transcriptional control of the Caulobacter cell cycle.


Assuntos
Caulobacter/genética , Caulobacter/fisiologia , Pontos de Checagem do Ciclo Celular , Processamento de Proteína Pós-Traducional , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/fisiologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Quimiotaxia , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Óperon/genética , RNA Mensageiro/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
19.
Nature ; 484(7395): 538-41, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22456704

RESUMO

Protein synthesis by ribosomes takes place on a linear substrate but at non-uniform speeds. Transient pausing of ribosomes can affect a variety of co-translational processes, including protein targeting and folding. These pauses are influenced by the sequence of the messenger RNA. Thus, redundancy in the genetic code allows the same protein to be translated at different rates. However, our knowledge of both the position and the mechanism of translational pausing in vivo is highly limited. Here we present a genome-wide analysis of translational pausing in bacteria by ribosome profiling--deep sequencing of ribosome-protected mRNA fragments. This approach enables the high-resolution measurement of ribosome density profiles along most transcripts at unperturbed, endogenous expression levels. Unexpectedly, we found that codons decoded by rare transfer RNAs do not lead to slow translation under nutrient-rich conditions. Instead, Shine-Dalgarno-(SD)-like features within coding sequences cause pervasive translational pausing. Using an orthogonal ribosome possessing an altered anti-SD sequence, we show that pausing is due to hybridization between the mRNA and 16S ribosomal RNA of the translating ribosome. In protein-coding sequences, internal SD sequences are disfavoured, which leads to biased usage, avoiding codons and codon pairs that resemble canonical SD sites. Our results indicate that internal SD-like sequences are a major determinant of translation rates and a global driving force for the coding of bacterial genomes.


Assuntos
Bacillus subtilis/genética , Códon/genética , Escherichia coli/genética , Biossíntese de Proteínas/genética , Ribossomos/metabolismo , Sequência de Bases , Códon/metabolismo , Genoma Bacteriano/genética , Modelos Genéticos , Terminação Traducional da Cadeia Peptídica/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
20.
Nature ; 475(7356): 308-15, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21776076

RESUMO

Gene expression originates from individual DNA molecules within living cells. Like many single-molecule processes, gene expression and regulation are stochastic, that is, sporadic in time. This leads to heterogeneity in the messenger-RNA and protein copy numbers in a population of cells with identical genomes. With advanced single-cell fluorescence microscopy, it is now possible to quantify transcriptomes and proteomes with single-molecule sensitivity. Dynamic processes such as transcription-factor binding, transcription and translation can be monitored in real time, providing quantitative descriptions of the central dogma of molecular biology and the demonstration that a stochastic single-molecule event can determine the phenotype of a cell.


Assuntos
Células/metabolismo , Imagem Molecular/métodos , Sobrevivência Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA