Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
BMC Neurosci ; 23(1): 39, 2022 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-35754033

RESUMO

BACKGROUND: Corticotropin-releasing factor (CRF) is the major neuromodulator orchestrating the stress response, and is secreted by neurons in various regions of the brain. Cerebellar CRF is released by afferents from inferior olivary neurons and other brainstem nuclei in response to stressful challenges, and contributes to modulation of synaptic plasticity and motor learning behavior via its receptors. We recently found that CRF modulates facial stimulation-evoked molecular layer interneuron-Purkinje cell (MLI-PC) synaptic transmission via CRF type 1 receptor (CRF-R1) in vivo in mice, suggesting that CRF modulates sensory stimulation-evoked MLI-PC synaptic plasticity. However, the mechanism of how CRF modulates MLI-PC synaptic plasticity is unclear. We investigated the effect of CRF on facial stimulation-evoked MLI-PC long-term depression (LTD) in urethane-anesthetized mice by cell-attached recording technique and pharmacological methods. RESULTS: Facial stimulation at 1 Hz induced LTD of MLI-PC synaptic transmission under control conditions, but not in the presence of CRF (100 nM). The CRF-abolished MLI-PC LTD was restored by application of a selective CRF-R1 antagonist, BMS-763,534 (200 nM), but it was not restored by application of a selective CRF-R2 antagonist, antisauvagine-30 (200 nM). Blocking cannabinoid type 1 (CB1) receptor abolished the facial stimulation-induced MLI-PC LTD, and revealed a CRF-triggered MLI-PC long-term potentiation (LTP) via CRF-R1. Notably, either inhibition of protein kinase C (PKC) with chelerythrine (5 µM) or depletion of intracellular Ca2+ with cyclopiazonic acid (100 µM), completely prevented CRF-triggered MLI-PC LTP in mouse cerebellar cortex in vivo. CONCLUSIONS: The present results indicated that CRF blocked sensory stimulation-induced opioid-dependent MLI-PC LTD by triggering MLI-PC LTP through CRF-R1/PKC and intracellular Ca2+ signaling pathway in mouse cerebellar cortex. These results suggest that activation of CRF-R1 opposes opioid-mediated cerebellar MLI-PC plasticity in vivo in mice.


Assuntos
Hormônio Liberador da Corticotropina , Células de Purkinje , Analgésicos Opioides/farmacologia , Animais , Córtex Cerebelar/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Interneurônios/metabolismo , Camundongos , Plasticidade Neuronal/fisiologia , Células de Purkinje/metabolismo , Receptor CB1 de Canabinoide/metabolismo
2.
Transl Psychiatry ; 14(1): 272, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961057

RESUMO

Valproic acid (VPA) is one of the most effective antiepileptic drugs, and exposing animals to VPA during gestation has been used as a model for autism spectrum disorder (ASD). Numerous studies have shown that impaired synaptic transmission in the cerebellar cortical circuits is one of the reasons for the social deficits and repetitive behavior seen in ASD. In this study, we investigated the effect of VPA exposure during pregnancy on tactile stimulation-evoked cerebellar mossy fiber-granule cell (MF-GC) synaptic transmission in mice anesthetized with urethane. Three-chamber testing showed that mice exposed to VPA mice exhibited a significant reduction in social interaction compared with the control group. In vivo electrophysiological recordings revealed that a pair of air-puff stimulation on ipsilateral whisker pad evoked MF-GC synaptic transmission, N1, and N2. The evoked MF-GC synaptic responses in VPA-exposed mice exhibited a significant increase in the area under the curve (AUC) of N1 and the amplitude and AUC of N2 compared with untreated mice. Cerebellar surface application of the selective N-methyl-D-aspartate (NMDA) receptor blocker D-APV significantly inhibited facial stimulation-evoked MF-GC synaptic transmission. In the presence of D-APV, there were no significant differences between the AUC of N1 and the amplitude and AUC of N2 in the VPA-exposed mice and those of the untreated mice. Notably, blockade of the GluN2A subunit-containing, but not the GluN2B subunit-containing, NMDA receptor, significantly inhibited MF-GC synaptic transmission and decreased the AUC of N1 and the amplitude and AUC of N2 in VPA-exposed mice to levels similar to those seen in untreated mice. In addition, the GluN2A subunit-containing NMDA receptor was expressed at higher levels in the GC layer of VPA-treated mice than in control mice. These results indicate that gestational VPA exposure in mice produces ASD-like behaviors, accompanied by increased cerebellar MF-GC synaptic transmission and an increase in GluN2A subunit-containing NMDA receptor expression in the offspring.


Assuntos
Transtorno do Espectro Autista , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal , Receptores de N-Metil-D-Aspartato , Transmissão Sináptica , Ácido Valproico , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Valproico/farmacologia , Gravidez , Feminino , Camundongos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Transtorno do Espectro Autista/induzido quimicamente , Masculino , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Anticonvulsivantes/farmacologia
3.
Neurosci Lett ; 826: 137733, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492880

RESUMO

Etomidate (ET) is a widely used intravenous imidazole general anesthetic, which depresses the cerebellar neuronal activity by modulating various receptors activity and synaptic transmission. In this study, we investigated the effects of ET on the cerebellar climbing fiber-Purkinje cells (CF-PC) plasticity in vitro in mice using whole-cell recording technique and pharmacological methods. Our results demonstrated that CF tetanic stimulation produced a mGluR1-dependent long-term depression (LTD) of CF-PC excitatory postsynaptic currents (EPSCs), which was enhanced by bath application of ET (10 µM). Blockade of mGluR1 receptor with JNJ16259685, ET triggered the tetanic stimulation to induce a CF-PC LTD accompanied with an increase in paired-pulse ratio (PPR). The ET-triggered CF-PC LTD was abolished by extracellular administration of an N-methyl-(D)-aspartate (NMDA) receptor antagonist, D-APV, as well as by intracellular blockade of NMDA receptors activity with MK801. Furthermore, blocking cannabinoids 1 (CB1) receptor with AM251 or chelating intracellular Ca2+ with BAPTA, ET failed to trigger the CF-PC LTD. Moreover, the ET-triggered CF-PC LTD was abolished by inhibition of protein kinase A (PKA), but not by inhibition of protein kinase C inhibiter. The present results suggest that ET acts on postsynaptic NMDA receptor resulting in an enhancement of the cerebellar CF-PC LTD through CB1 receptor/PKA cascade in vitro in mice. These results provide new evidence and possible mechanism for ET anesthesia to affect motor learning and motor coordination by regulating cerebellar CF-PC LTD.


Assuntos
Etomidato , Camundongos , Animais , Etomidato/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Sinapses/fisiologia , Cerebelo/fisiologia , Plasticidade Neuronal/fisiologia , Células de Purkinje/fisiologia , Transmissão Sináptica , Anestésicos Intravenosos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA