Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Nanobiotechnology ; 22(1): 186, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632585

RESUMO

Animal-derived biomaterials have been extensively employed in clinical practice owing to their compositional and structural similarities with those of human tissues and organs, exhibiting good mechanical properties and biocompatibility, and extensive sources. However, there is an associated risk of infection with pathogenic microorganisms after the implantation of tissues from pigs, cattle, and other mammals in humans. Therefore, researchers have begun to explore the development of non-mammalian regenerative biomaterials. Among these is the swim bladder, a fish-derived biomaterial that is rapidly used in various fields of biomedicine because of its high collagen, elastin, and polysaccharide content. However, relevant reviews on the biomedical applications of swim bladders as effective biomaterials are lacking. Therefore, based on our previous research and in-depth understanding of this field, this review describes the structures and compositions, properties, and modifications of the swim bladder, with their direct (including soft tissue repair, dural repair, cardiovascular repair, and edible and pharmaceutical fish maw) and indirect applications (including extracted collagen peptides with smaller molecular weights, and collagen or gelatin with higher molecular weights used for hydrogels, and biological adhesives or glues) in the field of biomedicine in recent years. This review provides insights into the use of swim bladders as source of biomaterial; hence, it can aid biomedicine scholars by providing directions for advancements in this field.


Assuntos
Materiais Biocompatíveis , Bexiga Urinária , Humanos , Animais , Bovinos , Suínos , Colágeno/química , Peptídeos , Peixes , Engenharia Tecidual , Mamíferos
2.
BMC Public Health ; 24(1): 28, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167038

RESUMO

BACKGROUND: Fractures present serious health challenges for older adults, including premature mortality and reduced quality of life. Obesity has become significantly prevalent in China. However, the association between obesity and fractures remains unclear. This study aimed to assess the association between obesity and fractures among Chinese women above 50 years of age. METHODS: A prospective cohort study was designed based on the China Health and Nutrition Survey, using data from 1997 to 2015. The average follow-up duration was seven years. Trained investigators measured body mass index (BMI) and waist circumference (WC) at baseline. Obesity was defined according to World Health Organization recommendations. Waist-to-height ratio (W-HtR) was calculated, with 0.5 as the cutoff value. Onset of fractures, self-reported by the participants during the follow-up period, was the primary outcome. Cox hazard regression models were used to assess the association between BMI, WC, W-HtR and subsequent risk of fracture. A sensitivity analysis was conducted by multiple imputation of missing data on the variables at baseline. RESULTS: A total of 2,641 women aged ≥ 50 years were involved in the study. In all the models, no significant association existed between BMI and fracture risk. However, women with WC ≥ 88 cm had significantly higher risk of fracture than those with WC < 80 cm according to both the unadjusted (HR = 1.744, 95% CI: 1.173-2.591) and adjusted models (HR = 1.796, 95% CI: 1.196-2.695). In addition, W-HtR and fracture risk were positively associated according to both the unadjusted (HR = 1.798, 95% CI: 1.230-2.627) and adjusted models (HR = 1.772, 95% CI: 1.209-2.599). Results of the sensitivity analysis were consistent with those of the above analyses. CONCLUSIONS: Abdominal obesity increased the risk of all-cause fractures in Chinese women ≥ 50 years old. Intervention strategies and measures to prevent or address abdominal obesity would be helpful to decrease the fracture incidence.


Assuntos
Fraturas Ósseas , Obesidade Abdominal , Qualidade de Vida , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Índice de Massa Corporal , China/epidemiologia , Obesidade/complicações , Obesidade/epidemiologia , Obesidade Abdominal/epidemiologia , Estudos Prospectivos , Fatores de Risco , Circunferência da Cintura
3.
BMC Public Health ; 24(1): 1235, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704531

RESUMO

BACKGROUND: Periodontitis represents the foremost oral condition in young men, strongly correlated with socioeconomic elements and oral health behaviors. This research aimed to assess the prevalence of periodontitis and associated associations with socio-demographics and oral health practices for subsequent Hazard Ratio (HR) estimation. METHODS: A total of 46,476 young men were recruited to the study between August 2022 and October 2023. A questionnaire on socio-demographic factors and oral health-related behaviors related to periodontitis was completed. The standard procedure was used for oral examination. Logistic regression and hazard ratios were used to estimate the influencing factors, whereas the nomogram was used to predict the risk of periodontitis in young men. RESULTS: A total of 46,476 young men were surveyed and completed the questionnaire. The overall prevalence of periodontitis among young men was 1.74%. Out of these, 1.7% had mild periodontitis and 0.6% had moderate periodontitis. Age and dental calculus were important factors in the periodontal health of young men. This nomogram, which includes 7 easily obtainable clinical characteristics routinely collected during periodontitis risk assessment, provides clinicians with a user-friendly tool to assess the risk of periodontal disease in young men. CONCLUSIONS: Regular dental prophylaxis is crucial for young men to maintain their gingival health and prevent the onset of periodontitis. Dental calculus plays a prominent role in this matter, as it serves as a significant contributing factor.


Assuntos
Periodontite , Humanos , Masculino , Periodontite/epidemiologia , Estudos Transversais , China/epidemiologia , Adulto Jovem , Prevalência , Adulto , Fatores de Risco , Inquéritos e Questionários , Adolescente , Nomogramas , Saúde Bucal/estatística & dados numéricos , Fatores Socioeconômicos
4.
J Nanobiotechnology ; 21(1): 471, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062466

RESUMO

The exploration of cell response to nanotopography has attracted considerable attentions for years. This article focuses on the influence of nanotopography on the intracellular Ca2+ dynamics, the most ubiquitous but ignored second messenger. The classic titanium nanotubes (NT) were fabricated by anodization to formulate nanoporous surfaces. Firstly, the store operative calcium entry (SOCE) in endoplasmic reticulum (ER) and functional Ca2+ release-activated Ca2+ (CRAC) channels were significantly enhanced on NT surfaces that revealed by live-cell Ca2+ imaging and fluorescence resonance energy transfer (FRET) identification of orai1-stim1 connection. To investigate the potential implication of Ca2+ elevation, the dynamic cell migration trajectory was monitored by a self-made holder, which could not only be suitable for the opaque implant surface but also guarantee the focus fields identical during samples shifting. The cell migration on NT surface was more vigorous and rapid, which was correlated with higher focal adhesion proteins expression, Ca2+-dependent calpain activity and stim1 level. In conclusion, this study has confirmed the novel ER Ca2+ hemostasis pathway on nanosurfaces and its crucial role in cell migration regulation, which may help for more biofavorable implant surface design.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Sinalização do Cálcio
5.
Oral Dis ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811593

RESUMO

OBJECTIVES: Connexin43 (Cx43) is involved in the inflammation of many tissue types. Dental caries is infectious disease resulting from mineralized tissue dissolution by a specific bacterial population, causing pulp inflammation. However, Cx43's role in dental pulp remains unclear. Here, we investigated the function of Cx43 during pulp inflammation. MATERIALS AND METHODS: We constructed a dentin injury model in Sprague-Dawley rats to investigate changes in Cx43 expression during pulp inflammation. Cx43 was inhibited in human dental pulp cells (hDPCs) that had been stimulated with lipopolysaccharide (LPS) to investigate the effect of Cx43 on inflammatory response. Promotion of TLR4-NF-κB pathway activity and special Cx43 channel inhibitors were used to clarify the function of Cx43 in hDPCs. RESULTS: Dentin injury led to low-level inflammation in dental pulp. Following dentin injury, Cx43 expression initially decreased before gradually recovering to normal levels. Cx43 inhibition reduced LPS-induced expression of inflammatory cytokines and NF-κB pathway activity. Promotion of NF-κB pathway activity counteracted the effect of Cx43 in hDPCs. Furthermore, inhibition of Cx43 hemichannels reduced LPS-induced inflammatory cytokine expression. CONCLUSIONS: Cx43 is involved in inflammation of dental pulp, while its inhibition reduced LPS-induced inflammation in hDPCs through NF-κB pathway via blockage of hemichannels.

6.
Am J Physiol Cell Physiol ; 322(3): C327-C337, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986020

RESUMO

In vivo administration of dopamine (DA) receptor (DR)-related drugs modulate gastric pepsinogen secretion. However, DRs on gastric pepsinogen-secreting chief cells and DA D2 receptor (D2R) on somatostatin-secreting D cells were subsequently acquired. In this study, we aimed to further investigate the local effect of DA on gastric pepsinogen secretion through DRs expressed on chief cells or potential D2Rs expressed on D cells. To elucidate the modulation of DRs in gastric pepsinogen secretion, immunofluorescence staining, ex vivo incubation of gastric mucosa isolated from normal and D2R-/- mice were conducted, accompanied by measurements of pepsinogen or somatostatin levels using biochemical assays or enzyme-linked immunosorbent assays. D1R, D2R, and D5R-immunoreactivity (IR) were observed on chief cells in mouse gastric mucosa. D2R-IR was widely distributed on D cells from the corpus to the antrum. Ex vivo incubation results showed that DA and the D1-like receptor agonist SKF38393 increased pepsinogen secretion, which was blocked by the D1-like receptor antagonist SCH23390. However, D2-like receptor agonist quinpirole also significantly increased pepsinogen secretion, and D2-like receptor antagonist sulpiride blocked the promotion of DA. Besides, D2-like receptors exerted an inhibitory effect on somatostatin secretion, in contrast to their effect on pepsinogen secretion. Furthermore, D2R-/- mice showed much lower basal pepsinogen secretion but significantly increased somatostatin release and an increased number of D cells in gastric mucosa. Only SKF38393, not quinpirole, increased pepsinogen secretion in D2R-/- mice. DA promotes gastric pepsinogen secretion directly through D1-like receptors on chief cells and indirectly through D2R-mediated suppression of somatostatin release.


Assuntos
Celulas Principais Gástricas/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Pepsinogênio A/metabolismo , Quimpirol/farmacologia , Receptores de Dopamina D2/agonistas , Células Secretoras de Somatostatina/efeitos dos fármacos , Somatostatina/metabolismo , Animais , Celulas Principais Gástricas/metabolismo , Antagonistas de Dopamina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Via Secretória , Células Secretoras de Somatostatina/metabolismo
7.
Mediators Inflamm ; 2022: 1755416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052307

RESUMO

Objectives: Following cerebral ischemia, microRNA- (miR-) 29b in circulating blood is downregulated. This study investigates the underlying mechanism and implications of miR-29b in leukocyte induction. Methods: miR-29b from stroke patients and rats with middle cerebral artery occlusion (MCAO) were assessed using real-time polymerase chain reaction (PCR). miR-29b agomir was used to increase miR-29b expression in leukocytes via intravenous injection. C1q and tumor necrosis factor (C1QTNF) 6, interleukin- (IL-) 1ß, zonula occludens- (ZO-) 1, occludin, and ischemic outcomes were assessed in MCAO rats. Additionally, hCMEC/D3 cells were subjected to oxygen-glucose deprivation (OGD) and cocultured with HL-60 cells. Results: miR-29b levels in neutrophils were found to be significantly lower in stroke patients compared with healthy controls, which may indicate its high diagnostic sensitivity and specificity for stroke. Moreover, miR-29b levels in leukocytes showed a negative correlation with National Institute of Health Stroke Scale (NIHSS) scores and C1QTNF6 levels. In MCAO rats, miR-29b overexpression reduced brain infarct volume and brain edema, decreasing IL-1ß levels in leukocytes and in the brain 24 hours poststroke. miR-29b attenuated IL-1ß expression via C1QTNF6 inhibition, leading to decreased blood-brain barrier (BBB) disruption and leukocyte infiltration. Moreover, miR-29b overexpression in HL-60 cells downregulated OGD-induced hCMEC/D3 cell apoptosis and increased ZO-1 and occludin levels in vitro. Conclusion: Leukocytic miR-29b attenuates inflammatory response by augmenting BBB integrity through C1QTNF6, suggesting a novel miR-29b-based therapeutic therapy for ischemic stroke.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , AVC Isquêmico , MicroRNAs , Animais , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Glucose/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/patologia , AVC Isquêmico/metabolismo , MicroRNAs/metabolismo , Ocludina/metabolismo , Ratos
8.
Microsc Microanal ; : 1-14, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35644608

RESUMO

Due to the lack of research between the inner layers in the structure of colonic mucous and the metabolism of fatty acid in the constipation model, we aim to determine the changes in the mucous phenotype of the colonic glycocalyx and the microbial community structure following treatment with Rhubarb extract in our research. The constipation and treatment models are generated using adult male C57BL/6N mice. We perform light microscopy and transmission electron microscopy (TEM) to detect a Muc2-rich inner mucus layer attached to mice colon under different conditions. In addition, 16S rDNA sequencing is performed to examine the intestinal flora. According to TEM images, we demonstrate that Rhubarb can promote mucin secretion and find direct evidence of dendritic structure-linked mucus structures with its assembly into a lamellar network in a pore size distribution in the isolated colon section. Moreover, the diversity of intestinal flora has noticeable changes in constipated mice. The present study characterizes a dendritic structure and persistent cross-links have significant changes accompanied by the alteration of intestinal flora in feces in models of constipation and pretreatment with Rhubarb extract.

9.
J Labelled Comp Radiopharm ; 65(14): 354-360, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36261868

RESUMO

Diabetes mellitus (DM) and insulinoma are mainly affected by the status of pancreatic ß-cell mass (BCM). Development of imaging agents for BCM allows to study pancreatic ß cells and the relationship between ß cells and DM or insulinoma. In this study, we investigated the density of dopamine D1 receptor on the ß cells and measured BCM by statistical image processing. The pancreatic uptakes of [125 I]I-R-(+)-7-chloro-8-hydroxy-1-(3'-iodopheny1)-3-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine ([125 I]I-R-(+)-TISCH), dopamine D1 receptor tracer, in normal and diabetic rats displayed significant differences at 30 min (1.11 ± 0.08% ID/g vs. 0.63 ± 0.09% ID/g, p < 0.0001). In the presence of SCH23390, the pancreatic uptake of [125 I]I-R-(+)-TISCH at 30 min in normal rats was lower (1.01 ± 0.04% ID/g, p < 0.05). Although the blocking was not complete, [125 I]I-R-(+)-TISCH showed specific binding signals to the pancreas. Furthermore, the uptakes of [125 I]I-R-(+)-TISCH in INS-1 cells were reduced in the presence of SCH23390 at different concentrations. [125 I]I-R-(+)-TISCH displayed a respectable uptake in insulinoma. Overall, [125 I]I-R-(+)-TISCH provided specific binding signals to pancreatic ß cells. Although the specific signal may not be sufficient for imaging in vivo, the dopamine D1 receptor can still be considered as a potential target for studying BCM. Further investigation will be required to optimize the ligand.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Insulinoma , Neoplasias Pancreáticas , Animais , Ratos , Dopamina , Receptores de Dopamina D1/metabolismo , Ligantes , Células Secretoras de Insulina/metabolismo , Benzazepinas/metabolismo
10.
Cell Tissue Res ; 386(2): 249-260, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34370080

RESUMO

Patients with Parkinson's disease (PD) have a higher incidence rate of duodenal ulcers. The mucus barrier provides the first line of defense for duodenal mucosal protection. However, it is unknown whether duodenal mucus secretion is affected in PD. In the present study, we used the rats microinjected 6-hydroxydopamine (6-OHDA) into the bilateral substantia nigra to investigate duodenal mucus secretion and potential therapeutic targets in duodenal ulcer in PD. Alcian blue-periodic acid-Schiff, transmission electron microscopy, immunofluorescence, duodenal mucosal incubation, and enzyme-linked immunosorbent assays were used. The 6-OHDA rats exhibited mucin accumulation and retention in duodenal goblet cells. Mucin granules were unable to fuse with the apical membranes of goblet cells, and the exocytosis ratio of goblet cells was significantly reduced. Moreover, decreased acetylcholine and increased muscarinic receptor 2 (M2R) levels were detected in the duodenal mucosa of 6-OHDA rats. Bilateral vagotomy rats were also characterized by defective duodenal mucus secretion and decreased acetylcholine with increased M2R levels in the duodenal mucosa. Application of the cholinomimetic drug carbachol or blocking M2R with methoctramine significantly promoted mucus secretion by goblet cells and increased MUC2 content in duodenal mucosa-incubated solutions from 6-OHDA and vagotomy rats. We conclude that the reduced acetylcholine and increased M2R contribute to the impaired duodenal mucus secretion of 6-OHDA rats. The study provides new insights into the mechanism of duodenal mucus secretion and potential therapeutic targets for the treatment of duodenal ulcers in PD patients.


Assuntos
Acetilcolina/metabolismo , Mucosa Intestinal/metabolismo , Muco/metabolismo , Doença de Parkinson Secundária/metabolismo , Receptor Muscarínico M2/metabolismo , Animais , Duodeno/metabolismo , Masculino , Oxidopamina , Ratos , Ratos Sprague-Dawley
11.
FASEB J ; 34(5): 6934-6949, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32239566

RESUMO

Neutrophil infiltration and phenotypic transformation are believed to contribute to neuronal damage in ischemic stroke. Emerging evidence suggests that histone deacetylase 2 (HDAC2) is an epigenetic regulator of inflammatory cells. Here, we aimed to investigate whether microRNA-494 (miR-494) affects HDAC2-mediated neutrophil infiltration and phenotypic shift. MiR-494 levels in neutrophils from acute ischemic stroke (AIS) patients were detected by real-time PCR. Chromatin Immunoprecipitation (ChIP)-Seq was performed to clarify which genes are the binding targets of HDAC2. Endothelial cells and cortical neurons were subjected to oxygen-glucose deprivation (OGD), transwell assay was conducted to examine neutrophil migration through endothelial cells, and neuronal injury was examined after stimulating with supernatant from antagomiR-494-treated neutrophils. C57BL/6J mice were subjected to transient middle cerebral artery occlusion (MCAO) and antagomiR-494 was injected through tail vein immediately after reperfusion, and neutrophil infiltration and phenotypic shift was examined. We found that the expression of miR-494 in neutrophils was significantly increased in AIS patients. HDAC2 targeted multiple matrix metalloproteinases (MMPs) and Fc-gamma receptor III (CD16) genes in neutrophils of AIS patients. Furthermore, antagomiR-494 repressed expression of multiple MMPs genes, including MMP7, MMP10, MMP13, and MMP16, which reduced the number of brain-infiltrating neutrophils by regulating HDAC2. AntagomiR-494 could also exert its neuroprotective role through inhibiting the shift of neutrophils toward pro-inflammatory N1 phenotype in vivo and in vitro. Taken together, miR-494 may serve as an alternative predictive biomarker of the outcome of AIS patients, and antagomiR-494 treatment decreases the expression of multiple MMPs and the infiltration of neutrophils and inhibits the shift of neutrophils into N1 phenotype partly by targeting HDAC2.


Assuntos
Antagomirs/administração & dosagem , Histona Desacetilase 2/metabolismo , MicroRNAs/antagonistas & inibidores , Neutrófilos/metabolismo , Acidente Vascular Cerebral/terapia , Administração Intravenosa , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Estudos de Casos e Controles , Modelos Animais de Doenças , Células HL-60 , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Masculino , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Interferência de RNA , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo
12.
Arch Microbiol ; 204(1): 78, 2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-34954813

RESUMO

We evaluated the variations of bacterial communities in six heavy metal contaminated soils sampled from Yanzi Bian (YZB) and Shanping Cun (SPC) tailings located in northwestern China. Statistical analysis showed that both the heavy metals and soil chemical properties could affect the structure and diversity of the bacterial communities in the tailing soils. Cd, Cu, Zn, Cr, Pb, pH, SOM (soil organic matters), TP (total phosphorus) and TN (total nitrogen) were the main driving factors of the bacterial community variations. As a consequence, the relative abundances of certain bacterial phyla including Proteobacteria, Chloroflexi, Firmicutes, Nitrospirota and Bacteroidota were significantly increased in the tailing soils. Further, we found that the abundance increasement of these phyla were mainly contributed by certain species, such as s__unclassified_g__Thiobacillus (Proteobacteria), s__unclassified_g__Sulfobacillus (Firmicutes) and Leptospirillum ferriphilum (Nitrospirota). Thus, these species were considered to be strongly heavy metal tolerant. Together, our findings will provide a useful insight for further bioremediations of these contaminated areas.


Assuntos
Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Bactérias/classificação , China , Monitoramento Ambiental , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Zinco
13.
Mol Pain ; 15: 1744806919847810, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30983496

RESUMO

Electroacupuncture has been shown to effectively reduce chronic pain in patients with nerve injury. The underlying mechanisms are not well understood. Accumulated evidence suggests that purinergic P2X3 receptors (P2X3Rs) in dorsal root ganglion neurons play a major role in mediating chronic pain associated with nerve injury. The aim of this study is to determine if electroacupuncture stimulation alters P2X3R activity in dorsal root ganglia to produce analgesia under neuropathic pain condition. Peripheral neuropathy was produced by ligation of the left lumbar 5 (L5) spinal nerve in rats. Low-frequency (2 Hz) electrical stimulation was applied to ipsilateral ST36 and BL60 acupoints in rats. The P2X3R agonist (α,ß-meATP)-induced flinch responses were reduced after electroacupuncture treatment. Western analyses showed that P2X3R expression was upregulated in nerve-uninjured lumbar 4 (L4) dorsal root ganglion neurons ipsilateral to the spinal nerve ligation. Electroacupuncture-stimulation reversed the upregulation. In nerve-injured L5 dorsal root ganglia, P2X3R expression was substantially reduced. Electroacupuncture had no effect on the reduction. We also determined the injury state of P2X3R expressing dorsal root ganglion neurons using the neuronal injury marker, activating transcription factor 3 (ATF3). Immunohistochemical assay showed that in L4 dorsal root ganglia, almost all P2X3Rs were expressed in uninjured (ATF3-) neurons. Spinal nerve ligation increased the expression of P2X3Rs. Electroacupuncture reduced the increase in P2X3R expression without affecting the percentage of ATF + neurons. In ipsilateral L5 dorsal root ganglion neurons, spinal nerve ligation reduced the percentage of P2X3R + neurons and markedly increased the percentage of ATF3 + cells. Almost all of P2X3Rs were expressed in damaged (ATF3+) neurons. Electroacupuncture had no effect on spinal nerve ligation-induced changes in the percentage of P2X3R or percentage of ATF3 + cells in L5 dorsal root ganglia. These observations led us to conclude that electroacupuncture effectively reduces injury-induced chronic pain by selectively reducing the expression of P2X3Rs in nerve-uninjured L4 dorsal root ganglion neurons.


Assuntos
Regulação para Baixo , Eletroacupuntura , Gânglios Espinais/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Nervos Espinhais/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Trifosfato de Adenosina/análogos & derivados , Animais , Gânglios Espinais/patologia , Hiperalgesia/patologia , Ligadura , Vértebras Lombares/patologia , Masculino , Neurônios/patologia , Ratos Sprague-Dawley
15.
Sensors (Basel) ; 19(2)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634480

RESUMO

A novel turn-on fluorescence assay was developed for the rapid detection of glutathione (GSH) based on the inner-filter effect (IFE) and redox reaction. Molybdenum disulfide quantum dots (MoS2 QDs), which have stable fluorescent properties, were synthesized with hydrothermal method. Manganese dioxide nanosheets (MnO2 NSs) were prepared by exfoliating the bulk δ-MnO2 material in bovine serum albumin (BSA) aqueous solution. The morphology structures of the prepared nanoparticles were characterized by transmission electron microscope (TEM). Studies have shown that the fluorescence of MoS2 QDs could be quenched in the presence of MnO2 NSs as a result of the IFE, and is recovered after the addition of GSH to dissolve the MnO2 NSs. The fluorescence intensity showed a good linear relationship with the GSH concentration in the range 20⁻2500 µM, the limit of detection was 1.0 µM. The detection method was applied to the analysis of GSH in human serum samples. This simple, rapid, and cost-effective method has great potential in analyzing GSH and in disease diagnosis.


Assuntos
Técnicas Biossensoriais/métodos , Glutationa/isolamento & purificação , Nanopartículas Metálicas/química , Pontos Quânticos/química , Dissulfetos/química , Corantes Fluorescentes/química , Glutationa/sangue , Ouro/química , Humanos , Limite de Detecção , Compostos de Manganês/química , Molibdênio/química , Óxidos/química , Telúrio/química
16.
Metab Brain Dis ; 33(6): 1995-2003, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30117100

RESUMO

Overwhelming evidence suggests that microglia play an important role in ischemic injury and they polarize into two different phenotypes with distinct functions after ischemic stroke. We performed the present study to investigate whether L-3-n butylphthalide (NBP) has an effect on microglial polarization. Mice were subjected to transient middle cerebral artery occlusion (MCAO) for 45 min, and then immediately after reperfusion were treated with NBP or vehicle via the caudal vein for 7 consecutive days. 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed that NBP treatment resulted in a tendency to decrease cerebral infarct volume at 1 day after MCAO, and significant decreased infarct volume at 3 days after MCAO. Sensorimotor function was evaluated by the adhesive removal test and balance beam test, which were superior in NBP-treated mice compared with vehicle-treated mice at 1 and 3 days after MCAO. Immunofluorescent staining further indicated that NBP treatment significantly increased the number of CD206+/Iba1+ M2 microglia/macrophages and reduced the number of CD16+/Iba1+ M1 cells at 3 and 7 days after MCAO reperfusion. Western blot also showed an elevation of M2 marker (arginase-1) in NBP-treated brains at 7 days after MCAO. In conclusion, our results clearly show that NBP treatment significantly mitigates ischemic brain damage and promotes recovery of neurological function in early phase after ischemic stroke, probably by skewing M1 microglia/macrophages polarization towards M2 phenotype. Thus, our study provides new evidence that NBP might be a promising candidate for ameliorating injury caused by ischemic stroke.


Assuntos
Benzofuranos/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Polaridade Celular/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Benzofuranos/farmacologia , Isquemia Encefálica/patologia , Polaridade Celular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Microglia/fisiologia , Fármacos Neuroprotetores/farmacologia , Distribuição Aleatória , Acidente Vascular Cerebral/patologia
17.
Mikrochim Acta ; 185(5): 273, 2018 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-29705889

RESUMO

A hybrid material composed of graphitic carbon nitride (g-C3N4) and platinum nanoparticles (PtNPs) with peroxidase mimicking activity was used to design a rapid, sensitive and low-cost colorimetric method for the determination of Ag(I). The g-C3N4-PtNPs hybrid was synthesized by reduction of chloroplatinic acid using sodium borohydride under ultrasonication and in the presence of g-C3N4. The hybrid can catalyze the oxidation 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue-colored product with an absorption maximum at 652 nm. On addition of Ag(I) and in the presence of citric acid, it will be reduced to form Ag(0) under the catalytic action of PtNPs. Ag(0) is then adsorbed on the surface of the g-C3N4-PtNPs. This results in the inhibition of the enzyme mimetic activity of the hybrid. Hence, less blue product will be formed from TMB. Under optimum conditions, Ag(I) can be quantified in the 0.05-5.0 nM concentration range with a 22 pM detection limit. This assay is rapid and reliable and was applied to the determination of Ag(I) in spiked real water samples. Graphical abstract A hybrid nanomaterial consisting of graphitic carbon nitride and platinum nanoparticles (g-C3N4-PtNPs) can catalyze the oxidation of tetramethylbenzidine (TMB) to produce a blue-colored product (TMBox). The enzyme mimetic activity of the hybrid is inhibited by Ag+, thereby decreasing the generation of blue product from TMB.

18.
Stroke ; 48(8): 2211-2221, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28630232

RESUMO

BACKGROUND AND PURPOSE: Long noncoding RNA H19 is repressed after birth, but can be induced by hypoxia. We aim to investigate the impact on and underlying mechanism of H19 induction after ischemic stroke. METHODS: Circulating H19 levels in stroke patients and mice subjected to middle cerebral artery occlusion were assessed using real-time polymerase chain reaction. H19 siRNA and histone deacetylase 1 (HDAC1) plasmid were used to knock down H19 and overexpress HDAC1, respectively. Microglial polarization and ischemic outcomes were assessed in middle cerebral artery occlusion mice and BV2 microglial cells subjected to oxygen-glucose deprivation. RESULTS: Circulating H19 levels were significantly higher in stroke patients compared with healthy controls, indicating high diagnostic sensitivity and specificity. Moreover, plasma H19 levels showed a positive correlation with National Institute of Health Stroke Scale score and tumor necrosis factor-α levels. After middle cerebral artery occlusion in mice, H19 levels increased in plasma, white blood cells, and brain. Intracerebroventricular injection of H19 siRNA reduced infarct volume and brain edema, decreased tumor necrosis factor-α and interleukin-1ß levels in brain tissue and plasma, and increased plasma interleukin-10 concentrations 24 hours poststroke. Additionally, H19 knockdown attenuated brain tissue loss and neurological deficits 14 days poststroke. BV2 cell-based experiments showed that H19 knockdown blocked oxygen-glucose deprivation-driven M1 microglial polarization, decreased production of tumor necrosis factor-α and CD11b, and increased the expression of Arg-1 and CD206. Furthermore, H19 knockdown reversed oxygen-glucose deprivation-induced upregulation of HDAC1 and downregulation of acetyl-histone H3 and acetyl-histone H4. In contrast, HDAC1 overexpression negated the effects of H19 knockdown. CONCLUSIONS: Our findings indicate that H19 promotes neuroinflammation by driving HDAC1-dependent M1 microglial polarization, suggesting a novel H19-based diagnosis and therapy for ischemic stroke.


Assuntos
Isquemia Encefálica/sangue , Histona Desacetilase 1/sangue , Mediadores da Inflamação/sangue , Microglia/metabolismo , RNA Longo não Codificante/sangue , Acidente Vascular Cerebral/sangue , Idoso , Animais , Biomarcadores/sangue , Isquemia Encefálica/diagnóstico , Linhagem Celular , Polaridade Celular/fisiologia , Feminino , Técnicas de Silenciamento de Genes/métodos , Humanos , Inflamação/sangue , Inflamação/diagnóstico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Pessoa de Meia-Idade , Acidente Vascular Cerebral/diagnóstico
19.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27385722

RESUMO

Sensitization of purinergic P2X3 receptors (P2X3Rs) contributes to the production of exaggerated nociceptive responses following inflammatory injury. We showed previously that prostaglandin E2 (PGE2) potentiates P2X3R-mediated ATP currents in dorsal root ganglion neurons isolated from both control and complete Freund's adjuvant-induced inflamed rats. PGE2 potentiation of ATP currents depends only on PKA signaling in control neurons, but it depends on both PKA and PKC signaling in inflamed neurons. We further found that inflammation evokes an increase in exchange proteins directly activated by cAMP (Epacs) in dorsal root ganglions. This increase promotes the activation of PKC to produce a much enhanced PGE2 effect on ATP currents and to elicit Epac-dependent flinch nocifensive behavioral responses in complete Freund's adjuvant rats. The link between Epac-PKC signaling and P2X3R sensitization remains unexplored. Here, we show that the activation of Epacs promotes the expression of phosphorylated PKC and leads to an increase in the cytoskeleton, F-actin, expression at the cell perimeter. Depolymerization of F-actin blocks PGE2-enhanced ATP currents and inhibits P2X3R-mediated nocifensive responses after inflammation. Thus, F-actin is dynamically involved in the Epac-PKC-dependent P2X3R sensitization. Furthermore, Epacs induce a PKC-dependent increase in the membrane expression of P2X3Rs. This increase is abolished by F-actin depolymerization, suggesting that F-actin mediates Epac-PKC signaling of P2X3R membrane expression. Thus, after inflammation, an Epac-PKC dependent increase in F-actin in dorsal root ganglion neurons enhances the membrane expression of P2X3Rs to bring about sensitization of P2X3Rs and abnormal pain behaviors.


Assuntos
Actinas/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Inflamação/patologia , Proteína Quinase C/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Citocalasina D/farmacologia , Dinoprostona/farmacologia , Adjuvante de Freund , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/patologia , Inflamação/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Tionucleotídeos/farmacologia
20.
Mol Pain ; 11: 68, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26542462

RESUMO

BACKGROUND: We have previously shown that endogenously active purinergic P2X7 receptors (P2X7Rs) in satellite glial cells of dorsal root ganglia (DRGs) stimulate ATP release. The ATP activates P2Y1Rs located in the enwrapped neuronal somata, resulting in down-regulation of P2X3Rs. This P2X7R-P2Y1-P2X3R inhibitory control significantly reduces P2X3R-mediated nociceptive responses. The underlying mechanism by which the activation of P2Y1Rs inhibits the expression of P2X3Rs remains unexplored. RESULTS: Examining the effect of the activation of p38 mitogen-activated protein kinase on the expression of P2X3Rs in DRGs, we found that the p38 activator, anisomycin (Anis), reduced the expression of P2X3Rs. Blocking the activity of SGCs by the glial Krebs cycle inhibitor, fluorocitrate, did not change the effect of Anis. These results suggest that neuronal p38 plays a major role in the inhibition of P2X3R expression. Western blotting analyses showed that inhibiting P2Y1Rs by MRS2179 (MRS) or blocking P2X7Rs by either oxATP or A740003 reduced pp38 and increased P2X3R expression in DRGs. These results are further supported by the immunohistochemical study showing that P2X7R and P2Y1R antagonists reduce the percentage of pp38-positive neurons. These observations suggest that activation of P2X7Rs and P2Y1Rs promotes p38 activity to exert inhibitory control on P2X3R expression. Since activation of p38 by Anis in the presence of either A740003 or MRS could overcome the block of P2X7R-P2Y1R inhibitory control, p38 in DRG neurons is downstream of P2Y1Rs. In addition, inhibition of p38 by SB202190 was found to prevent the P2X7R and P2Y1R block of P2X3R expression and increase P2X3R-mediated nociceptive flinch behaviors. CONCLUSIONS: p38 in DRG neurons downstream of P2Y1R is necessary and sufficient for the P2X7R-P2Y1R inhibitory control of P2X3R expression.


Assuntos
Gânglios Espinais/fisiologia , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Gânglios Espinais/metabolismo , Imidazóis/farmacologia , Masculino , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA