Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Cell Biochem ; 125(3): e30522, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38224175

RESUMO

Understanding the connection between senescence phenotypes and mitochondrial dysfunction is crucial in aging and premature aging diseases. Loss of mitochondrial function leads to a decline in T cell function, which plays a significant role in this process. However, more research is required to determine if improving mitochondrial homeostasis alleviates senescence phenotypes. Our research has shown an association between NAD+ and senescent T cells through the cGAS-STING pathway, which can lead to an inflammatory phenotype. Further research is needed to fully understand the role of NAD+ in T-cell aging and how it can be utilized to improve mitochondrial homeostasis and alleviate senescence phenotypes. We demonstrate here that mitochondrial dysfunction and cellular senescence with a senescence-associated secretory phenotype (SASP) occur in senescent T cells and tumor-bearing mice. Senescence is mediated by a stimulator of interferon genes (STING) and involves ectopic cytoplasmic DNA. We further show that boosting intracellular NAD+ levels with nicotinamide mononucleotide (NMN) prevents senescence and SASP by promoting mitophagy. NMN treatment also suppresses senescence and neuroinflammation and improves the survival cycle of mice. Encouraging mitophagy may be a useful strategy to prevent CD8+ T cells from senescence due to mitochondrial dysfunction. Additionally, supplementing with NMN to increase NAD+ levels could enhance survival rates in mice while also reducing senescence and inflammation, and enhancing mitophagy as a potential therapeutic intervention.


Assuntos
Doenças Mitocondriais , NAD , Camundongos , Animais , NAD/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Mitocôndrias/metabolismo , Senescência Celular/fisiologia , Homeostase , Doenças Mitocondriais/metabolismo , Suplementos Nutricionais
2.
Food Funct ; 14(9): 4392-4405, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37092895

RESUMO

Oxidative stress is generally considered inseparable from the development and exacerbation of ulcerative colitis (UC). Therefore, reducing oxidative stress has become a possible way to alleviate UC. In this study, the therapeutic effects of different doses of liposome-embedded superoxide dismutase (L-SOD) on mice with DSS-induced UC were systematically investigated. The results showed that L-SOD significantly attenuated the signs of colitis in mice, including colonic shortening, diarrhoea, bloody stools, and histopathological changes. L-SOD ameliorated DSS-induced oxidative damage, increased SOD, catalase (CAT), and glutathione (GSH) activities, and decreased malondialdehyde (MDA) levels. In addition, L-SOD ameliorated the inflammatory response by inhibiting the expression of myeloperoxidase (MPO) and pro-inflammatory cytokines and protected barrier function by promoting the expression of the tight junction proteins occludin and ZO-1 in the colon. Importantly, the results demonstrated a bell-shaped distribution of therapeutic effects relative to the administered dose, with an optimal dose of 150 000 U kg-1. These results indicate that L-SOD has great potential as an ingredient in functional foods for the prevention and mitigation of UC.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Lipossomos/farmacologia , Colite/induzido quimicamente , Colo/metabolismo , Estresse Oxidativo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Glutationa/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA