RESUMO
PURPOSE: Patients with gynaecological cancer often experience psychological issues due to multiple stressors. Psychological disturbances have debilitating effects on patients with gynaecological cancer. In recent decades, digital psychosocial interventions have rapidly advanced and been incorporated into mental health interventions. Digital psychosocial interventions could provide patients with several benefits over traditional in-person interventions, including convenience, anonymity, flexible scheduling, and geographic mobility. The aim of this systematic review was to synthesize the effectiveness of digital psychosocial intervention in reducing psychological distress, depression, and anxiety and improving health-related quality of life in patients with gynaecological cancer. METHODS: Three-step extensive search was performed on 22 December 2022 from nine bibliographic databases, trial registries and grey literature. Experimental studies involving patients with gynaecological cancer utilizing digital psychosocial interventions for the improvement of mental health outcomes were included. Meta-analysis was conducted using RevMan 5.4 software. Heterogeneity was analysed by Cochran's Q test and I2. Subgroup analyses were attempted to evaluate relative effect sizes of subgroup features. RESULTS: Meta-analysis of nine studies revealed small effect size in reduction of depression post-intervention (d = 0.24, 95% CI - 0.46 to - 0.02) and medium effect size in reduction of psychological distress post-intervention (d = 0.51, 95% CI - 0.81 to - 0.21) and follow-up (d = 0.65, 95% CI - 1.25 to - 0.05) compared to the control group. The effects of digital psychosocial interventions on anxiety and health-related quality of life were not statistically significant. CONCLUSIONS: Digital psychosocial interventions probably reduced psychological distress and slightly reduced depression amongst patients with gynaecological cancer compared to the control group, which can be integrated into clinical practice. Additional trials with rigorous methodology and bigger sample sizes are needed to validate findings. TRIAL REGISTRATION: PROSPERO (CRD42023389502).
Assuntos
Ansiedade , Depressão , Neoplasias dos Genitais Femininos , Angústia Psicológica , Intervenção Psicossocial , Qualidade de Vida , Feminino , Humanos , Ansiedade/etiologia , Ansiedade/terapia , Ansiedade/psicologia , Depressão/etiologia , Depressão/terapia , Depressão/psicologia , Neoplasias dos Genitais Femininos/psicologia , Neoplasias dos Genitais Femininos/terapia , Intervenção Psicossocial/métodos , Estresse Psicológico/terapia , Estresse Psicológico/etiologia , Estresse Psicológico/psicologia , Estresse Psicológico/prevenção & controleRESUMO
Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly. Dysregulation of intracellular Ca2+ homeostasis plays a critical role in the pathological development of AD. Dauricine (DAU) is a bisbenzylisoquinoline alkaloid isolated from Menispermum dauricum DC., which can prevent the influx of extracellular Ca2+ and inhibit the release of Ca2+ from the endoplasmic reticulum. DAU has a potential for anti-AD. However, it is unclear whether DAU can exert its anti-AD effect in vivo by regulating the Ca2+ related signaling pathways. Here, we investigated the effect and mechanism of DAU on D-galactose and AlCl3 combined-induced AD mice based on the Ca2+/CaM pathway. The results showed that DAU (1â¯mg/kg and 10â¯mg/kg for 30â¯days) treatment attenuated learning and memory deficits and improved the nesting ability of AD mice. The HE staining assay showed that DAU could inhibit the histopathological alterations and attenuate neuronal damage in the hippocampus and cortex of AD mice. Studies on the mechanism indicated that DAU decreased the phosphorylation of CaMKII and Tau and reduced the formation of NFTs in the hippocampus and cortex. DAU treatment also reduced the abnormally high expression of APP, BACE1, and Aß1-42, which inhibited the deposition of Aß plaques. Moreover, DAU could decrease Ca2+ levels and inhibit elevated CaM protein expression in the hippocampus and cortex of AD mice. The molecular docking results showed that DAU may have a high affinity with CaM or BACE1. DAU has a beneficial impact on pathological changes in AD mice induced by D-galactose and AlCl3 and may act by negative regulation of the Ca2+/CaM pathway and its downstream molecules such as CaMKII and BACE1.
Assuntos
Doença de Alzheimer , Benzilisoquinolinas , Disfunção Cognitiva , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Galactose/toxicidade , Galactose/metabolismo , Secretases da Proteína Precursora do Amiloide/efeitos adversos , Secretases da Proteína Precursora do Amiloide/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Simulação de Acoplamento Molecular , Ácido Aspártico Endopeptidases/efeitos adversos , Ácido Aspártico Endopeptidases/metabolismo , Benzilisoquinolinas/efeitos adversos , Hipocampo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo , Camundongos TransgênicosRESUMO
Papillary thyroid carcinoma (PTC) is the most common type of thyroid malignancy, with growing incidence every year. microRNAs (miRs) are known to regulate the physiological and pathological processes of cancers, such as proliferation, migration, invasion, survival, and epithelial-mesenchymal transition (EMT). Herein, this study aimed to investigate the effect of miR-539 on cell proliferation, apoptosis, and EMT by targeting secretory leukocyte protease inhibitor (SLPI) via the transforming growth factor ß1 (TGF-ß1)/Smads signaling pathway in PTC. First, PTC-related differentially expressed genes and regulatory miR were screened using bioinformatics analysis, dual luciferase reporter gene assay, and ribonucleoprotein immunoprecipitation, which identified the SLPI gene and the regulatory miR-539 for this study. We identified SLPI as a highly expressed gene in PTC tissues, and SLPI was targeted and negatively regulated by miR-539. Then, we introduced a series of miR-539 mimics, miR-539 inhibitors, and small interfering RNA against SLPI plasmids into CGTHW-3 cells to examine the effects of miR-539 and SLPI on the expression of TGF-ß1/Smads signaling pathway-, EMT-, and apoptosis-related factors, as well as cell proliferation, migration, invasion, and apoptosis. The obtained results indicated that CGTHW-3 cells treated with silenced SLPI or overexpressed miR-539 suppressed the cell proliferation, migration, invasion abilities, and resistance to apoptosis of PTC cells, corresponding to increased expression of Bcl-2-associated X protein, TGF-ß1, Sekelsky mothers against dpp 4, and epithelial cadherin, and decreased B cell lymphoma 2, Vimentin, and N-cadherin. Altogether, we concluded that overexpressed miR-539 could inhibit the PTC cell proliferation and promote apoptosis and EMT by targeting SPLI via activation of the TGF-ß1/Smads signaling pathway.
Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Inibidor Secretado de Peptidases Leucocitárias/genética , Proteínas Smad/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Fator de Crescimento Transformador beta1/genética , Adulto , Idoso , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Fator de Crescimento Transformador beta1/metabolismo , Vimentina/genética , Vimentina/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismoRESUMO
BACKGROUND: Maintaining ideal cardiovascular health scores (CHS) may indirectly contribute to reducing the risk of perioperative acute kidney injury (AKI), which has never been explored previously. In this study, we aimed to explore the relationship between CHS and AKI and provide new ideas for AKI prevention and treatment. METHODS: We examined the effects of CHS on the occurrence of AKI among 2783 participants from the Kailuan study, who received general anesthesia during noncardiac surgery from 2016 to 2020. The odds ratios (ORs) and 95% confidence intervals (95% CIs) for AKI were calculated by using the logistic regression. RESULTS: Among 2783 participants 187 were diagnosed with perioperative AKI. We found an inverse relationship between the CHS scores and the risk of AKI. Participants with CHS score ≥ 10 had 57% decreased risk of AKI (OR = 0.43, 95% CI = 0.23, 0.79), compared with participants with CHS score ≤ 7, especially in men (OR = 0.39, 95% CI: 0.20, 0.76). In addition, participants who never smoked, exercised frequently, and had normal blood pressure had decreased risk of AKI, with corresponding ORs (95% CIs) of 0.66 (0.47, 0.91), 0.73 (0.60, 0.92), and 0.46 (0.28, 0.75), respectively. CONCLUSIONS: CHS was strongly associated with the risk of perioperative AKI, and higher CHS scores were associated with a lower risk of AKI. Further research is needed to explore the long-term effects of achieving and maintaining an ideal CHS on AKI risk.
Assuntos
Injúria Renal Aguda , Sistema Cardiovascular , Masculino , Humanos , Estudos de Casos e Controles , Fatores de Risco , Estudos Retrospectivos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Complicações Pós-Operatórias/epidemiologiaRESUMO
The study of the effects of different fertilization treatments on soil methane (CH4) and nitrous oxide (N2O) emissions in rice-vegetable rotation systems is of great significance to supplement the research gap on greenhouse gas emissions in tropical regions of China. In this study, four fertilization treatments were set up during the pepper season:phosphorus and potassium fertilizer application (PK); nitrogen, phosphorus, and potassium (NPK) application; half application of nitrogen, phosphorus, and potassium plus half application of organic fertilizer (NPK+M); and application of organic fertilizer (M). There was no fertilizer application during the following early rice season. The objective of our study was to investigate the rules of CH4 and N2O emissions under different fertilization treatments in the pepper growth season, and the effects of different fertilization treatments in the pepper growth season on rice yield, and CH4 and N2O emissions in the following early rice growth season. The close static chamber-gas chromatography method was applied to determine soil CH4 and N2O emissions. We measured crop yield, estimated global warming potential (GWP), and calculated greenhouse gas emission intensity (GHGI). Our results showed that:â the cumulative CH4 emission under the four fertilization treatments ranged between 0.9 kg·hm-2 to 2.7 kg·hm-2 during the pepper growth season and between 5.5 kg·hm-2 to 8.4 kg·hm-2 during the early rice growth season. Compared with NPK, NPK+M and M reduced the cumulative CH4 emission in the pepper growth season by 35.3% and 7.6%, respectively; however, NPK+M and M increased the cumulative CH4 emission in the early rice season by 37.5% and 55.1%, respectively. There was a significant difference in cumulative CH4 emission between M and NPK in the early rice growth season. â¡ The cumulative N2O emission under the four fertilization treatments varied from 0.5 kg·hm-2 to 3.0 kg·hm-2 in the pepper growth season and from 0.3 kg·hm-2 to 0.5 kg·hm-2 in the early rice growth season. The cumulative N2O emission was significantly decreased by 33.7% in NPK+M and by 16.0% in M, compared with that in NPK. In the early rice growth season, the cumulative N2O emission was decreased by 23.5% by NPK+M but was increased by 9.1% by M. There was no significant difference in the cumulative N2O emission among the four fertilization treatments. ⢠The yields of pepper and early rice under the four fertilization treatments were 3055.6-37722.5 kg·hm-2 and 5850.9-6994.4 kg·hm-2, respectively. Compared with that in NPK, NPK+M and M significantly increased pepper yield. The GWP under the four fertilization treatments in the pepper-early rice rotation system varied from 508.0 kg·hm-2 to 1864.4 kg·hm-2. Compared with NPK, NPK+M significantly decreased GWP by 25.7% and M insignificantly decreased GWP by 5.7%. The pepper growth season with the four fertilization treatments contributed to 69.2%-78.1% of the total GWP, and N2O contributed to 77.3%-85.3% of the total GWP. The GHGI ranged between 0.03 kg·kg-1 and 0.09 kg·kg-1 in the pepper growth season and between 0.04 kg·kg-1 and 0.24 kg·kg-1 in the early rice growth season. Compared with that in NPK, both M and NPK+M significantly reduced the GHGI by 71.5% and 54.7%, respectively, in the pepper growth season. In the early rice season, NPK+M significantly decreased the GHGI by 44.0%, but M non-significantly decreased the GHGI by 20.8%. The peak in N2O emission in the tropical pepper-early rice rotation system appeared after fertilization, and N2O emissions primarily occurred in the pepper growth season. However, CH4 emission was mainly concentrated in the early rice season. Considering the overall enhancing effects on crop yield and mitigation of greenhouse gas emissions, the co-application of chemical and organic fertilizers (NPK+M) can be recommended as an optimal fertilization practice to mitigate greenhouse gas emissions and maintain crop yield in pepper-rice rotation systems of Hainan, China.
Assuntos
Gases de Efeito Estufa , Oryza , Óxido Nitroso/análise , Metano/análise , Gases de Efeito Estufa/análise , Verduras , Agricultura/métodos , Fertilizantes/análise , Solo/química , Nitrogênio/análise , Fósforo/análise , Potássio , FertilizaçãoRESUMO
Based on the rice-vegetable crop rotation model, in-situ measurements of nitrous oxide (N2O) and methane (CH4) emissions were conducted in double-cropping rice fields in Hainan to determine the impact of coconut chaff biochar on greenhouse gas emissions. The experiment involved four treatments:conventional farming fertilization (CON), nitrogen fertilizer combined with 20 t ·hm-2 biochar (B1), nitrogen fertilizer combined with 40 t ·hm-2 biochar (B2), and no nitrogen fertilizer, as the control (CK). The N2O and CH4 emissions were measured using static chamber-gas chromatography during the two paddy seasons, and the global warming potential (GWP) and greenhouse gas intensity (GHGI) were also estimated. The results show that N2O emission dynamics during the early rice season are closely related to the mineral nitrogen content of the soil. The N2O is emitted at the rice seedling and tillering stages after fertilization. The cumulative N2O emission during the early rice season was 0.18-0.76 kg ·hm-2. Compared with the CON treatment, the biochar treatments reduced N2O by 18%-43%, and the B2 treatment resulted in a significant reduction. The addition of biochar may promote the reduction of N2O at the early rice seedling stage and increase N2O emissions by improving the soil NO3--N content at the early rice tillering stage. During the late rice season, N2O is emitted during the heading and maturity stages, and the cumulative N2O emission was 0.17-0.34 kg ·hm-2. The B1 treatment reduced emissions by 37%, and B2 increased emission by only 3%, which is not a significant difference. The peak of CH4 emissions from rice fields appeared in the late phase of the early rice season and prophase of the late rice season. The cumulative emission of CH4 in the early rice season was 3.11-14.87 kg ·hm-2. Compared with CON, the CK treatment increased emission by 39%. The biochar treatment may increase soil aeration and limit the ability of CH4 production in the early rice season, as B1 and B2 treatments reduced CH4 emissions by 28% and 71%. The cumulative CH4 emission in late rice season was 53.1-146.3 kg ·hm-2, and the emission dynamics were significantly positively correlated with NH4+-N content. CK and B1 treatments increased CH4 emissions by 52% and 99%, respectively compared with CON, and the B2 treatment significantly increased CH4 emissions by 176%. Compared with CON, the B1 and B2 treatments increased the yield by 12.0% and 14.3% when applied in the early rice season and by 7.6% and 0.4% when applied in the late rice season, respectively. Due to the increased methane emissions in the late rice season, biochar amendment increased the GWP of the double-cropping rice field, in which the high amount of biochar reached a significant level; different amounts of biochar had no significant effect on the GHGI of the double-cropping rice field. Thus, the application of coconut chaff biochar for the reduction of greenhouse gas emission, from rice fields in hot areas, requires further research.
Assuntos
Óxido Nitroso , Oryza , Agricultura , Carvão Vegetal , China , Cocos , Fertilizantes/análise , Metano/análise , Óxido Nitroso/análise , SoloRESUMO
Paddy soils are widely considered a main source of methane (CH4) and nitrous oxide (N2O). Comprehensively evaluating CH4 and N2O emissions from double-rice systems in tropical regions with different water irrigation and fertilizer applications is of great significance for addressing greenhouse gas emissions from such systems in China. In this study, eight treatments were evaluated:conventional irrigation-PK fertilizer (D-PK), conventional irrigation-NPK fertilizer (D-NPK), conventional irrigation-NPK+organic fertilizer (D-NPK+M), conventional irrigation-organic fertilizer (D-M), continuous flooding-PK fertilizer (F-PK), continuous flooding-NPK fertilizer (F-NPK), continuous flooding-NPK+organic fertilizer (F-NPK+M), and continuous flooding-organic fertilizer (F-M). CH4 and N2O emissions in double-rice fields in tropical region of china were monitored in situ by closed static chamber-chromatography method and crop yields as well as global warming potential (GWP) and greenhouse gas intensity (GHGI) were determined. The results show that:â The cumulative CH4 emissions from early rice and late rice are 10.3-78.9 kg·hm-2and 84.6-185.5 kg·hm-2, respectively. Compared with F-PK and F-NPK treatments, F-NPK+M and F-M treatments significantly increased the cumulative emissions of CH4 from early rice season. Under the same fertilizer conditions, the cumulative CH4 emissions under continuous flooding condition were significantly higher than that under conventional irrigation condition. Irrigation and fertilization had extremely significant effects on CH4 emission in the early rice season. â¡ The cumulative N2O emissions across all treatments were 0.18-0.76 kg·hm-2 in early rice season and 0.15-0.58 kg·hm-2in late rice season, respectively. During early rice season, compared with F-PK, F-NPK significantly increased the cumulative N2O emission; however, compared with D-PK, D-NPK, D-NPK+M, and D-M treatments significantly increased the cumulative N2O emissions. Compared with F-PK, other three treatments under continuous flooding condition significantly increased N2O cumulative emission in late rice season; compared with D-PK, D-NPK, and D-M treatment significantly increased the cumulative N2O emission. Irrigation and fertilization had significant impacts on N2O emissions in late rice season, and fertilization had significant impacts on N2O emission in early rice season. ⢠Early and late rice yields were 7310.7-9402.4 kg·hm-2 and 3902.8-7354.6 kg·hm-2, respectively. Early rice yields in both F-NPK and F-M treatments were significantly higher than those in F-PK, D-PK, and D-NPK treatments. Compared with PK, the other three fertilization treatments under the same irrigation condition significantly increased late rice yield. The GWP and GHGI in early rice season were 580.8-2818.5 kg·hm-2and 0.08-0.30 kg·kg-1, respectively. There was no significant difference in GWP among four fertilizer treatments under conventional irrigation condition in the early rice season. However, F-NPK+M and F-M treatments had a significant increase in GWP compared with F-PK. The GHGI in F-NPK+M and F-M treatments were significantly higher than that in other treatments. The GWP and GHGI in late rice season were 3091.6-6334.2 kg·hm-2 and 0.50-1.23 kg·kg-1, respectively. Irrigation significantly affected GWP and GHGI in both early and late rice seasons but fertilization had no significant impact on GWP and GHGI in late rice season. ⣠Correlation analysis results showed that soil NH4+-N content and soil temperature below 5 cm soil layer had an extremely significant negative correlation with CH4 emissions. Soil pH was extremely significant positive correlated with CH4 emissions but significantly negatively correlated with N2O emission. Soil NH4+-N and NO3--N concentrations were extremely significantly negatively correlated with N2O emission. Given crop yield, GWP, GHGI, and D-NPK+M can be recommended for local water and fertilizer management to reduce greenhouse gas emissions while maintaining rice yields.
Assuntos
Oryza , Agricultura , China , Fertilização , Fertilizantes/análise , Metano/análise , Óxido Nitroso/análise , Solo , ÁguaRESUMO
Alternating dry and wet conditions affect the main processes of N2O production, such as nitrification and denitrification. Such conditions are very common in tropical rice-growing areas, such as Hainan. As a type of soil amendment, biochar is widely used to improve physical and chemical properties of soil and to reduce soil greenhouse gas emissions. However, there is a lack of existing in-depth research on the emission reductions of biochar when used in tropical soils that undergo frequently alternating dry and wet conditions. In this experiment, typical paddy soil from northern Hainan was used as the test soil, and corn stalk biochar, carbonized under anaerobic conditions at 400â, was used as the test biochar. This experiment explored the effects of adding biochar on soil greenhouse gas emissions and microbial-related functional genes under different water management conditions. The experiment comprised a 30 d culture, kept in the dark at 25â, and a total of six treatments:alternating dry-wet conditions without adding biochar (AWD1), alternating dry-wet conditions with 2% biochar (AWD2), alternating dry-wet conditions with 4% biochar (AWD3), continuous flooding without adding biochar (CF1), continuous flooding with 2% biochar (CF2), and continuous flooding with 4% biochar (CF3). The results showed that:â the addition of biochar under different moisture conditions can reduce N2O emissions in acidic paddy soil (P<0.05, the same below), as the total N2O emissions with the AWD3 treatment were 0.43 mg ·kg-1, which indicates an approximate reduction of 68%, relative to the AWD1 treatment; â¡ Corn stalk biochar can significantly increase the soil pH under different water management conditions. Compared to the no-biochar treatment, the soil pH increased by 0.5 units on average after cultivation with the addition of biochar, and as the soil NH4+-N content increased, it led to a decrease in Eh. ⢠Corn stalk biochar significantly reduces the abundance of ammonia oxidizing bacteria and significantly increases the nosZ gene abundance. However, it decreases the ratio of (nirK+nirS)/nosZ, inhibits the nitrification process, and promotes the reduction of N2O in the denitrification process. Thereby, the addition of corn stalk biochar can reduce N2O emissions. These results show that alternating dry-wet conditions, combined with the addition of corn stalk biochar, are beneficial for reducing N2O emissions in paddy soil, which may have further application in the reduction of agricultural greenhouse gas emissions in northern Hainan.
Assuntos
Óxido Nitroso , Solo , Carvão Vegetal , Óxido Nitroso/análise , Microbiologia do Solo , Água , Abastecimento de ÁguaRESUMO
Cervical cancer, as the second leading cause of death in women malignant tumor, is not optimistic about survival rate and late recurrence rate. RCAN3 has been reported to function in a variety of diseases, but its relationship with cervical cancer has not been reported. This study aimed to investigate whether RCAN3 contributes to the development of cervical cancer and its mechanism. RCAN3 expression was analyzed in 306 cervical cancer tissues and 13 normal healthy tissues from TCGA and GTEX databases. Kaplan-Meier analysis and Cox regression analysis were carried out to assess the potential function of RCAN3. Subsequently, the upstream regulatory miRNA of RCAN3 was predicted by bioinformatics and confirmed using dual luciferase reporter assay. CCK-8, colony formation assay, transwell assay were used for functional analysis of miR-145/RCAN3 axis in vitro. The results showed that RCAN3 was highly expressed in cervical cancer tissues, leading to poor prognosis, and could be used as a prognostic factor for cervical cancer. MiR-145 directly targeted RCAN3, which was lowly expressed in cervical cancer tissues and cell lines, and the higher the miR-145 expression, the longer the survival time of patients. Finally, from the functional experiments results we can see that miR-145 can inhibit the proliferation, migration and invasion of cervical cancer cells, but overexpression of RCAN3 can reverse miR-145-mediated inhibition. To sum up, miR-145/RCAN3 axis may serve as a potential therapeutic target to regulate the progression of cervical cancer.