Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Appl Opt ; 63(6): 1634-1640, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38437379

RESUMO

The flexibly manipulated terahertz wave is currently a hot research topic. To address this challenge, we proposed an all-dielectric coding metasurface for shaping the terahertz wave including beam splitting, beam deflection, vortex beam generators, and a vortex beam and multi-beam splitting combination by combining addition with the convolution theorem. This work represents what we believe to be a new method of combining terahertz wave regulation with digital signal processing and opens up the versatile design ideas of multifunctional metadevices.

2.
Appl Opt ; 63(13): 3636-3640, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856549

RESUMO

Active adjustable terahertz multifunctional devices are crucial for the application of terahertz technology. In this paper, we propose a composite metasurface structure based on an indium antimonide metal octagonal pattern, which achieves different functional switching by controlling the phase state of indium antimonide material under different ambient temperatures. When indium antimonide exhibits in the dielectric state, by stacking and encoding the unit cell, the designed metasurface has the functions of two-beam splitting beam superposition, vortex beam and quarter beam superposition, and dual vortex beam superposition for circularly polarized and linearly polarized wave incidence. When indium antimonide appears in the metallic state, the encoding metasurface alters the modulation function of incident circularly polarized and linearly polarized terahertz waves. This terahertz metasurface provides a new approach for the design of multifunctional devices that can flexibly regulate terahertz wave metasurfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA