Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.925
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(17): 4380-4391.e14, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34147139

RESUMO

Despite the discovery of animal coronaviruses related to SARS-CoV-2, the evolutionary origins of this virus are elusive. We describe a meta-transcriptomic study of 411 bat samples collected from a small geographical region in Yunnan province, China, between May 2019 and November 2020. We identified 24 full-length coronavirus genomes, including four novel SARS-CoV-2-related and three SARS-CoV-related viruses. Rhinolophus pusillus virus RpYN06 was the closest relative of SARS-CoV-2 in most of the genome, although it possessed a more divergent spike gene. The other three SARS-CoV-2-related coronaviruses carried a genetically distinct spike gene that could weakly bind to the hACE2 receptor in vitro. Ecological modeling predicted the co-existence of up to 23 Rhinolophus bat species, with the largest contiguous hotspots extending from South Laos and Vietnam to southern China. Our study highlights the remarkable diversity of bat coronaviruses at the local scale, including close relatives of both SARS-CoV-2 and SARS-CoV.


Assuntos
COVID-19/virologia , Quirópteros/virologia , Coronavirus/genética , Evolução Molecular , SARS-CoV-2/genética , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Sudeste Asiático , China , Coronavirus/classificação , Coronavirus/isolamento & purificação , Fenômenos Ecológicos e Ambientais , Genoma Viral , Humanos , Modelos Moleculares , Filogenia , SARS-CoV-2/fisiologia , Alinhamento de Sequência , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Zoonoses Virais
2.
Nature ; 610(7931): 308-312, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36163288

RESUMO

Exploring the subsurface structure and stratification of Mars advances our understanding of Martian geology, hydrological evolution and palaeoclimatic changes, and has been a main task for past and continuing Mars exploration missions1-10. Utopia Planitia, the smooth plains of volcanic and sedimentary strata that infilled the Utopia impact crater, has been a prime target for such exploration as it is inferred to have hosted an ancient ocean on Mars11-13. However, 45 years have passed since Viking-2 provided ground-based detection results. Here we report an in situ ground-penetrating radar survey of Martian subsurface structure in a southern marginal area of Utopia Planitia conducted by the Zhurong rover of the Tianwen-1 mission. A detailed subsurface image profile is constructed along the roughly 1,171 m traverse of the rover, showing an approximately 70-m-thick, multi-layered structure below a less than 10-m-thick regolith. Although alternative models deserve further scrutiny, the new radar image suggests the occurrence of episodic hydraulic flooding sedimentation that is interpreted to represent the basin infilling of Utopia Planitia during the Late Hesperian to Amazonian. While no direct evidence for the existence of liquid water was found within the radar detection depth range, we cannot rule out the presence of saline ice in the subsurface of the landing area.

3.
Mol Cell ; 78(6): 1192-1206.e10, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32470318

RESUMO

Tumor-derived extracellular vesicles are important mediators of cell-to-cell communication during tumorigenesis. Here, we demonstrated that hepatocellular carcinoma (HCC)-derived ectosomes remodel the tumor microenvironment to facilitate HCC progression in an ectosomal PKM2-dependent manner. HCC-derived ectosomal PKM2 induced not only metabolic reprogramming in monocytes but also STAT3 phosphorylation in the nucleus to upregulate differentiation-associated transcription factors, leading to monocyte-to-macrophage differentiation and tumor microenvironment remodeling. In HCC cells, sumoylation of PKM2 induced its plasma membrane targeting and subsequent ectosomal excretion via interactions with ARRDC1. The PKM2-ARRDC1 association in HCC was reinforced by macrophage-secreted cytokines/chemokines in a CCL1-CCR8 axis-dependent manner, further facilitating PKM2 excretion from HCC cells to form a feedforward regulatory loop for tumorigenesis. In the clinic, ectosomal PKM2 was clearly detected in the plasma of HCC patients. This study highlights a mechanism by which ectosomal PKM2 remodels the tumor microenvironment and reveals ectosomal PKM2 as a potential diagnostic marker for HCC.


Assuntos
Proteínas de Transporte/metabolismo , Micropartículas Derivadas de Células/metabolismo , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/patologia , Quimiocina CCL1/metabolismo , Progressão da Doença , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/metabolismo , Prognóstico , Fator de Transcrição STAT3/metabolismo , Hormônios Tireóideos/genética , Microambiente Tumoral , Proteínas de Ligação a Hormônio da Tireoide
4.
Trends Genet ; 40(4): 364-378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453542

RESUMO

Dominance is usually considered a constant value that describes the relative difference in fitness or phenotype between heterozygotes and the average of homozygotes at a focal polymorphic locus. However, the observed dominance can vary with the genetic background of the focal locus. Here, alleles at other loci modify the observed phenotype through position effects or dominance modifiers that are sometimes associated with pathogen resistance, lineage, sex, or mating type. Theoretical models have illustrated how variable dominance appears in the context of multi-locus interaction (epistasis). Here, we review empirical evidence for variable dominance and how the observed patterns may be captured by proposed epistatic models. We highlight how integrating epistasis and dominance is crucial for comprehensively understanding adaptation and speciation.


Assuntos
Epistasia Genética , Modelos Genéticos , Heterozigoto , Fenótipo , Homozigoto , Alelos
5.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38770916

RESUMO

Prolyl hydroxylase domain (PHD) proteins are oxygen sensors that use intracellular oxygen as a substrate to hydroxylate hypoxia-inducible factor (HIF) α proteins, routing them for polyubiquitylation and proteasomal degradation. Typically, HIFα accumulation in hypoxic or PHD-deficient tissues leads to upregulated angiogenesis. Here, we report unexpected retinal phenotypes associated with endothelial cell (EC)-specific gene targeting of Phd2 (Egln1) and Hif2alpha (Epas1). EC-specific Phd2 disruption suppressed retinal angiogenesis, despite HIFα accumulation and VEGFA upregulation. Suppressed retinal angiogenesis was observed both in development and in the oxygen-induced retinopathy (OIR) model. On the other hand, EC-specific deletion of Hif1alpha (Hif1a), Hif2alpha, or both did not affect retinal vascular morphogenesis. Strikingly, retinal angiogenesis appeared normal in mice double-deficient for endothelial PHD2 and HIF2α. In PHD2-deficient retinal vasculature, delta-like 4 (DLL4, a NOTCH ligand) and HEY2 (a NOTCH target) were upregulated by HIF2α-dependent mechanisms. Inhibition of NOTCH signaling by a chemical inhibitor or DLL4 antibody partially rescued retinal angiogenesis. Taken together, our data demonstrate that HIF2α accumulation in retinal ECs inhibits rather than stimulates retinal angiogenesis, in part by upregulating DLL4 expression and NOTCH signaling.


Assuntos
Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células Endoteliais , Prolina Dioxigenases do Fator Induzível por Hipóxia , Receptores Notch , Neovascularização Retiniana , Transdução de Sinais , Regulação para Cima , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Receptores Notch/metabolismo , Receptores Notch/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia , Células Endoteliais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Vasos Retinianos/metabolismo , Angiogênese
6.
Nature ; 600(7889): 408-418, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880490

RESUMO

Since the first cases of COVID-19 were documented in Wuhan, China in 2019, the world has witnessed a devastating global pandemic, with more than 238 million cases, nearly 5 million fatalities and the daily number of people infected increasing rapidly. Here we describe the currently available data on the emergence of the SARS-CoV-2 virus, the causative agent of COVID-19, outline the early viral spread in Wuhan and its transmission patterns in China and across the rest of the world, and highlight how genomic surveillance, together with other data such as those on human mobility, has helped to trace the spread and genetic variation of the virus and has also comprised a key element for the control of the pandemic. We pay particular attention to characterizing and describing the international spread of the major variants of concern of SARS-CoV-2 that were first identified in late 2020 and demonstrate that virus evolution has entered a new phase. More broadly, we highlight our currently limited understanding of coronavirus diversity in nature, the rapid spread of the virus and its variants in such an increasingly connected world, the reduced protection of vaccines, and the urgent need for coordinated global surveillance using genomic techniques. In summary, we provide important information for the prevention and control of both the ongoing COVID-19 pandemic and any new diseases that will inevitably emerge in the human population in future generations.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral/genética , Internacionalidade , SARS-CoV-2/classificação , SARS-CoV-2/genética , Animais , Humanos , Vison/virologia , Epidemiologia Molecular , Filogenia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética
7.
Nature ; 590(7846): 410-415, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597760

RESUMO

Current X-ray imaging technologies involving flat-panel detectors have difficulty in imaging three-dimensional objects because fabrication of large-area, flexible, silicon-based photodetectors on highly curved surfaces remains a challenge1-3. Here we demonstrate ultralong-lived X-ray trapping for flat-panel-free, high-resolution, three-dimensional imaging using a series of solution-processable, lanthanide-doped nanoscintillators. Corroborated by quantum mechanical simulations of defect formation and electronic structures, our experimental characterizations reveal that slow hopping of trapped electrons due to radiation-triggered anionic migration in host lattices can induce more than 30 days of persistent radioluminescence. We further demonstrate X-ray luminescence extension imaging with resolution greater than 20 line pairs per millimetre and optical memory longer than 15 days. These findings provide insight into mechanisms underlying X-ray energy conversion through enduring electron trapping and offer a paradigm to motivate future research in wearable X-ray detectors for patient-centred radiography and mammography, imaging-guided therapeutics, high-energy physics and deep learning in radiology.

8.
Proc Natl Acad Sci U S A ; 121(4): e2318408121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232282

RESUMO

We synthesized ammonia (NH3) by bubbling nitrogen (N2) gas into bulk liquid water (200 mL) containing 50 mg polytetrafluoroethylene (PTFE) particles (~5 µm in diameter) suspended with the help of a surfactant (Tween 20, ~0.05 vol.%) at room temperature (25 °C). Electron spin resonance spectroscopy and density functional theory calculations reveal that water acts as the proton donor for the reduction of N2. Moreover, isotopic labeling of the N2 gas shows that it is the source of nitrogen in the ammonia. We propose a mechanism for ammonia generation based on the activation of N2 caused by electron transfer and reduction processes driven by contact electrification. We optimized the pH of the PTFE suspension at 6.5 to 7.0 and employed ultrasonic mixing. We found an ammonia production rate of ~420 µmol L-1 h-1 per gram of PTFE particles for the conditions described above. This rate did not change more than 10% over an 8-h period of sustained reaction.

9.
Proc Natl Acad Sci U S A ; 121(4): e2317058121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232281

RESUMO

Integration of methanogenic archaea with photocatalysts presents a sustainable solution for solar-driven methanogenesis. However, maximizing CH4 conversion efficiency remains challenging due to the intrinsic energy conservation and strictly restricted substrates of methanogenic archaea. Here, we report a solar-driven biotic-abiotic hybrid (biohybrid) system by incorporating cadmium sulfide (CdS) nanoparticles with a rationally designed methanogenic archaeon Methanosarcina acetivorans C2A, in which the glucose synergist protein and glucose kinase, an energy-efficient route for glucose transport and phosphorylation from Zymomonas mobilis, were implemented to facilitate nonnative substrate glucose for methanogenesis. We demonstrate that the photo-excited electrons facilitate membrane-bound electron transport chain, thereby augmenting the Na+ and H+ ion gradients across membrane to enhance adenosine triphosphate (ATP) synthesis. Additionally, this biohybrid system promotes the metabolism of pyruvate to acetyl coenzyme A (AcCoA) and inhibits the flow of AcCoA to the tricarboxylic acid (TCA) cycle, resulting in a 1.26-fold augmentation in CH4 production from glucose-derived carbon. Our results provide a unique strategy for enhancing methanogenesis through rational biohybrid design and reprogramming, which gives a promising avenue for sustainably manufacturing value-added chemicals.


Assuntos
Trifosfato de Adenosina , Metano , Metano/metabolismo , Transporte de Elétrons , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Transporte Biológico , Methanosarcina/metabolismo
10.
Blood ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805639

RESUMO

Loss of long-term hematopoietic stem cell (LT-HSC) function ex vivo hampers the success of clinical protocols reliant on culture. However, the kinetics and mechanisms by which this occurs remain incompletely characterized. Here, through time-resolved scRNA-Seq, matched in vivo functional analysis and the use of a reversible in vitro system of early G1 arrest, we define the sequence of transcriptional and functional events occurring during the first ex vivo division of human LT-HSCs. We demonstrate that the sharpest loss of LT-HSC repopulation capacity happens early on, between 6 and 24 hours of culture, before LT-HSCs commit to cell cycle progression. During this time window, LT-HSCs adapt to the culture environment, limiting global variability in gene expression and transiently upregulating gene networks involved in signaling and stress responses. From 24 hours, LT-HSC progression past early G1 contributes to the establishment of differentiation programmes in culture. However, contrary to current assumptions, we demonstrate that loss of HSC function ex vivo is independent of cell cycle progression. Finally, we show that targeting LT-HSC adaptation to culture by inhibiting early activation of JAK/STAT signaling improves HSC long-term repopulating function ex vivo. Collectively, our study demonstrates that controlling early LT-HSC adaptation to ex vivo culture, for example via JAK inhibition, is of critical importance to improve HSC gene therapy and expansion protocols.

11.
Circ Res ; 134(2): 165-185, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38166463

RESUMO

BACKGROUND: Atherosclerosis is a globally prevalent chronic inflammatory disease with high morbidity and mortality. The development of atherosclerotic lesions is determined by macrophages. This study aimed to investigate the specific role of myeloid-derived CD147 (cluster of differentiation 147) in atherosclerosis and its translational significance. METHODS AND RESULTS: We generated mice with a myeloid-specific knockout of CD147 and mice with restricted CD147 overexpression, both in an apoE-deficient (ApoE-/-) background. Here, the myeloid-specific deletion of CD147 ameliorated atherosclerosis and inflammation. Consistent with our in vivo data, macrophages isolated from myeloid-specific CD147 knockout mice exhibited a phenotype shift from proinflammatory to anti-inflammatory macrophage polarization in response to lipopolysaccharide/IFN (interferon)-γ. These macrophages demonstrated a weakened proinflammatory macrophage phenotype, characterized by reduced production of NO and reactive nitrogen species derived from iNOS (inducible NO synthase). Mechanistically, the TRAF6 (tumor necrosis factor receptor-associated factor 6)-IKK (inhibitor of κB kinase)-IRF5 (IFN regulatory factor 5) signaling pathway was essential for the effect of CD147 on proinflammatory responses. Consistent with the reduced size of the necrotic core, myeloid-specific CD147 deficiency diminished the susceptibility of iNOS-mediated late apoptosis, accompanied by enhanced efferocytotic capacity mediated by increased secretion of GAS6 (growth arrest-specific 6) in proinflammatory macrophages. These findings were consistent in a mouse model with myeloid-restricted overexpression of CD147. Furthermore, we developed a new atherosclerosis model in ApoE-/- mice with humanized CD147 transgenic expression and demonstrated that the administration of an anti-human CD147 antibody effectively suppressed atherosclerosis by targeting inflammation and efferocytosis. CONCLUSIONS: Myeloid CD147 plays a crucial role in the growth of plaques by promoting inflammation in a TRAF6-IKK-IRF5-dependent manner and inhibiting efferocytosis by suppressing GAS6 during proinflammatory conditions. Consequently, the use of anti-human CD147 antibodies presents a complementary therapeutic approach to the existing lipid-lowering strategies for treating atherosclerotic diseases.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Eferocitose , Fator 6 Associado a Receptor de TNF/metabolismo , Aterosclerose/metabolismo , Inflamação/genética , Camundongos Knockout , Fenótipo , Apolipoproteínas E , Fatores Reguladores de Interferon/genética , Camundongos Endogâmicos C57BL
12.
Proc Natl Acad Sci U S A ; 120(30): e2302014120, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459548

RESUMO

Spontaneous generation of reactive oxygen species (ROS) in aqueous microdroplets or at a water vapor-silicate interface is a new source of redox chemistry. However, such generation occurs with difficulty in liquid water having a large ionic strength. We report that ROS is spontaneously produced when water vapor contacts hydrogen-bonded hydroxyl groups on a silicate surface. The evolution of hydrogen-bonded species such as hydroxyl groups was investigated by using two-dimensional, time-resolved FT-IR spectroscopy. The participation of water vapor in ROS generation is confirmed by investigating the reaction of D2O vapor and hydroxyl groups on a silicate surface. We propose a reaction pathway for ROS generation based on the change of the hydrogen-bonding network and corresponding electron transfer onto the silicate surface in the water vapor-solid contact process. Our observations suggest that ROS production from water vapor-silicate contact electrification could have contributed to oxidation during the Archean Eon before the Great Oxidation Event.

13.
Proc Natl Acad Sci U S A ; 120(1): e2209062120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577070

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) are a heterogeneous group of cells with expansion, differentiation, and repopulation capacities. How HSPCs orchestrate the stemness state with diverse lineage differentiation at steady condition or acute stress remains largely unknown. Here, we show that zebrafish mutants that are deficient in an epigenetic regulator Atf7ip or Setdb1 methyltransferase undergo excessive myeloid differentiation with impaired HSPC expansion, manifesting a decline in T cells and erythroid lineage. We find that Atf7ip regulates hematopoiesis through Setdb1-mediated H3K9me3 modification and chromatin remodeling. During hematopoiesis, the interaction of Atf7ip and Setdb1 triggers H3K9me3 depositions in hematopoietic regulatory genes including cebpß and cdkn1a, preventing HSPCs from loss of expansion and premature differentiation into myeloid lineage. Concomitantly, loss of Atf7ip or Setdb1 derepresses retrotransposons that instigate the viral sensor Mda5/Rig-I like receptor (RLR) signaling, leading to stress-driven myelopoiesis and inflammation. We find that ATF7IP or SETDB1 depletion represses human leukemic cell growth and induces myeloid differentiation with retrotransposon-triggered inflammation. These findings establish that Atf7ip/Setdb1-mediated H3K9me3 deposition constitutes a genome-wide checkpoint that impedes the myeloid potential and maintains HSPC stemness for diverse blood cell production, providing unique insights into potential intervention in hematological malignancy.


Assuntos
Células-Tronco Hematopoéticas , Histona-Lisina N-Metiltransferase , Peixe-Zebra , Animais , Humanos , Diferenciação Celular , Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas/patologia , Histona-Lisina N-Metiltransferase/genética , Inflamação/patologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(27): e2304306120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364127

RESUMO

Understanding the fundamental interaction of nanoparticles at plant interfaces is critical for reaching field-scale applications of nanotechnology-enabled plant agriculture, as the processes between nanoparticles and root interfaces such as root compartments and root exudates remain largely unclear. Here, using iron deficiency-induced plant chlorosis as an indicator phenotype, we evaluated the iron transport capacity of Fe3O4 nanoparticles coated with citrate (CA) or polyacrylic acid (PAA) in the plant rhizosphere. Both nanoparticles can be used as a regulator of plant hormones to promote root elongation, but they regulate iron deficiency in plant in distinctive ways. In acidic root exudates secreted by iron-deficient Arabidopsis thaliana, CA-coated particles released fivefold more soluble iron by binding to acidic exudates mainly through hydrogen bonds and van der Waals forces and thus, prevented iron chlorosis more effectively than PAA-coated particles. We demonstrate through roots of mutants and visualization of pH changes that acidification of root exudates primarily originates from root tips and the synergistic mode of nanoparticle uptake and transformation in different root compartments. The nanoparticles entered the roots mainly through the epidermis but were not affected by lateral roots or root hairs. Our results show that magnetic nanoparticles can be a sustainable source of iron for preventing leaf chlorosis and that nanoparticle surface coating regulates this process in distinctive ways. This information also serves as an urgently needed theoretical basis for guiding the application of nanomaterials in agriculture.


Assuntos
Anemia Hipocrômica , Arabidopsis , Deficiências de Ferro , Nanopartículas de Magnetita , Ferro/metabolismo , Transporte Biológico , Anemia Hipocrômica/metabolismo , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo
15.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38421617

RESUMO

Polyploidy, a significant catalyst for speciation and evolutionary processes in both plant and animal kingdoms, has been recognized for a long time. However, the exact molecular mechanism that leads to polyploid formation, especially in vertebrates, is not fully understood. Our study aimed to elucidate this phenomenon using the zebrafish model. We successfully achieved an effective knockout of the cyclin N-terminal domain containing 1 (cntd1) using CRISPR/Cas9 technology. This resulted in impaired formation of meiotic crossovers, leading to cell-cycle arrest during meiotic metaphase and triggering apoptosis of spermatocytes in the testes. Despite these defects, the mutant (cntd1-/-) males were still able to produce a limited amount of sperm with normal ploidy and function. Interestingly, in the mutant females, it was the ploidy not the capacity of egg production that was altered. This resulted in the production of haploid, aneuploid, and unreduced gametes. This alteration enabled us to successfully obtain triploid and tetraploid zebrafish from cntd1-/- and cntd1-/-/- females, respectively. Furthermore, the tetraploid-heterozygous zebrafish produced reduced-diploid gametes and yielded all-triploid or all-tetraploid offspring when crossed with wild-type (WT) or tetraploid zebrafish, respectively. Collectively, our findings provide direct evidence supporting the crucial role of meiotic crossover defects in the process of polyploidization. This is particularly evident in the generation of unreduced eggs in fish and, potentially, other vertebrate species.


Assuntos
Triploidia , Peixe-Zebra , Masculino , Animais , Feminino , Tetraploidia , Sementes , Poliploidia , Ploidias
16.
PLoS Pathog ; 19(2): e1011119, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724179

RESUMO

As new mutations continue to emerge, the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus to evade the human immune system and neutralizing antibodies remains a huge challenge for vaccine development and antibody research. The majority of neutralizing antibodies have reduced or lost activity against SARS-CoV-2 variants. In this study, we reported a novel protein surface display system on a mammalian cell for obtaining a higher-affinity antibody in high-throughput manner. Using a saturation mutagenesis strategy through integrating microarray-based oligonucleotide synthesis and single-cell screening assay, we generated a group of new antibodies against diverse prevalent SARS-CoV-2 variants through high-throughput screening the human antibody REGN10987 within 2 weeks. The affinity of those optimized antibodies to seven prevalent mutants was greatly improved, and the EC50 values were no higher than 5 ng/mL. These results demonstrate the robustness of our screening system in the rapid generation of an antibody with higher affinity against a new SARS-CoV-2 variant, and provides a potential application to other protein molecular interactions.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Mutagênese , Proteínas de Membrana , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais , Mamíferos
17.
Blood ; 142(10): 903-917, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37319434

RESUMO

The bone marrow microenvironment (BMM) can regulate leukemia stem cells (LSCs) via secreted factors. Increasing evidence suggests that dissecting the mechanisms by which the BMM maintains LSCs may lead to the development of effective therapies for the eradication of leukemia. Inhibitor of DNA binding 1 (ID1), a key transcriptional regulator in LSCs, previously identified by us, controls cytokine production in the BMM, but the role of ID1 in acute myeloid leukemia (AML) BMM remains obscure. Here, we report that ID1 is highly expressed in the BMM of patients with AML, especially in BM mesenchymal stem cells, and that the high expression of ID1 in the AML BMM is induced by BMP6, secreted from AML cells. Knocking out ID1 in mesenchymal cells significantly suppresses the proliferation of cocultured AML cells. Loss of Id1 in the BMM results in impaired AML progression in AML mouse models. Mechanistically, we found that Id1 deficiency significantly reduces SP1 protein levels in mesenchymal cells cocultured with AML cells. Using ID1-interactome analysis, we found that ID1 interacts with RNF4, an E3 ubiquitin ligase, and causes a decrease in SP1 ubiquitination. Disrupting the ID1-RNF4 interaction via truncation in mesenchymal cells significantly reduces SP1 protein levels and delays AML cell proliferation. We identify that the target of Sp1, Angptl7, is the primary differentially expression protein factor in Id1-deficient BM supernatant fluid to regulate AML progression in mice. Our study highlights the critical role of ID1 in the AML BMM and aids the development of therapeutic strategies for AML.


Assuntos
Proteína 7 Semelhante a Angiopoietina , Proteína 1 Inibidora de Diferenciação , Leucemia Mieloide Aguda , Animais , Camundongos , Proteína 7 Semelhante a Angiopoietina/genética , Proteína 7 Semelhante a Angiopoietina/metabolismo , Medula Óssea/metabolismo , Modelos Animais de Doenças , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Microambiente Tumoral , Humanos , Proteína 1 Inibidora de Diferenciação/metabolismo
18.
Plant Cell ; 34(2): 889-909, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34850198

RESUMO

Phosphatidic acid (PA) is an important lipid essential for several aspects of plant development and biotic and abiotic stress responses. We previously suggested that submergence induces PA accumulation in Arabidopsis thaliana; however, the molecular mechanism underlying PA-mediated regulation of submergence-induced hypoxia signaling remains unknown. Here, we showed that in Arabidopsis, loss of the phospholipase D (PLD) proteins PLDα1 and PLDδ leads to hypersensitivity to hypoxia, but increased tolerance to submergence. This enhanced tolerance is likely due to improvement of PA-mediated membrane integrity. PA bound to the mitogen-activated protein kinase 3 (MPK3) and MPK6 in vitro and contributed to hypoxia-induced phosphorylation of MPK3 and MPK6 in vivo. Moreover, mpk3 and mpk6 mutants were more sensitive to hypoxia and submergence stress compared with wild type, and fully suppressed the submergence-tolerant phenotypes of pldα1 and pldδ mutants. MPK3 and MPK6 interacted with and phosphorylated RELATED TO AP2.12, a master transcription factor in the hypoxia signaling pathway, and modulated its activity. In addition, MPK3 and MPK6 formed a regulatory feedback loop with PLDα1 and/or PLDδ to regulate PLD stability and submergence-induced PA production. Thus, our findings demonstrate that PA modulates plant tolerance to submergence via both membrane integrity and MPK3/6-mediated hypoxia signaling in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ácidos Fosfatídicos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hipóxia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Fenótipo , Fosfolipase D/genética , Fosfolipase D/metabolismo , Plantas Geneticamente Modificadas , Estabilidade Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
FASEB J ; 38(13): e23706, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877842

RESUMO

The etiology of preeclampsia (PE), a complex and multifactorial condition, remains incompletely understood. DNA methylation, which is primarily regulated by three DNA methyltransferases (DNMTs), DNMT1, DNMT3A, and DNMT3B, plays a vital role in early embryonic development and trophectoderm differentiation. Yet, how DNMTs modulate trophoblast fusion and PE development remains unclear. In this study, we found that the DNMTs expression was downregulated during trophoblast cells fusion. Downregulation of DNMTs was observed during the reconstruction of the denuded syncytiotrophoblast (STB) layer of placental explants. Additionally, overexpression of DNMTs inhibited trophoblast fusion. Conversely, treatment with the DNA methylation inhibitor 5-aza-CdR decreased the expression of DNMTs and promoted trophoblast fusion. A combined analysis of DNA methylation data and gene transcriptome data obtained from the primary cytotrophoblasts (CTBs) fusion process identified 104 potential methylation-regulated differentially expressed genes (MeDEGs) with upregulated expression due to DNA demethylation, including CD59, TNFAIP3, SDC1, and CDK6. The transcription regulation region (TRR) of TNFAIP3 showed a hypomethylation with induction of 5-aza-CdR, which facilitated CREB recruitment and thereby participated in regulating trophoblast fusion. More importantly, clinical correlation analysis of PE showed that the abnormal increase in DNMTs may be involved in the development of PE. This study identified placental DNA methylation-regulated genes that may contribute to PE, offering a novel perspective on the role of epigenetics in trophoblast fusion and its implication in PE development.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Pré-Eclâmpsia , Trofoblastos , Trofoblastos/metabolismo , Feminino , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Fusão Celular , Placenta/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética
20.
Brain ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701344

RESUMO

The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) in depression is a topic of debate, and the underlying mechanisms remain largely unclear. We now elucidate hippocampal excitation-inhibition (E/I) balance underlies the regulatory effects of 5-HT2CR in depression. Molecular biological analyses showed that chronic mild stress (CMS) reduced the expression of 5-HT2CR in hippocampus. We revealed that inhibition of 5-HT2CR induced depressive-like behaviors, reduced GABA release and shifted the E/I balance towards excitation in CA3 pyramidal neurons by using behavioral analyses, microdialysis coupled with mass spectrum, and electrophysiological recording. Moreover, 5-HT2CR modulated neuronal nitric oxide synthase (nNOS)-carboxy-terminal PDZ ligand of nNOS (CAPON) interaction through influencing intracellular Ca2+ release, as determined by fiber photometry and coimmunoprecipitation. Notably, disruption of nNOS-CAPON by specific small molecule compound ZLc-002 or AAV-CMV-CAPON-125C-GFP, abolished 5-HT2CR inhibition-induced depressive-like behaviors, as well as the impairment in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly-mediated GABA vesicle release and a consequent E/I imbalance. Importantly, optogenetic inhibition of CA3 GABAergic neurons prevented the effects of AAV-CMV-CAPON-125C-GFP on depressive behaviors in the presence of 5-HT2CR antagonist. Conclusively, our findings disclose the regulatory role of 5-HT2CR in depressive-like behaviors and highlight the hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioral consequences of 5-HT2CR inhibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA