Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.210
Filtrar
1.
Cell ; 184(3): 775-791.e14, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33503446

RESUMO

The molecular pathology of multi-organ injuries in COVID-19 patients remains unclear, preventing effective therapeutics development. Here, we report a proteomic analysis of 144 autopsy samples from seven organs in 19 COVID-19 patients. We quantified 11,394 proteins in these samples, in which 5,336 were perturbed in the COVID-19 patients compared to controls. Our data showed that cathepsin L1, rather than ACE2, was significantly upregulated in the lung from the COVID-19 patients. Systemic hyperinflammation and dysregulation of glucose and fatty acid metabolism were detected in multiple organs. We also observed dysregulation of key factors involved in hypoxia, angiogenesis, blood coagulation, and fibrosis in multiple organs from the COVID-19 patients. Evidence for testicular injuries includes reduced Leydig cells, suppressed cholesterol biosynthesis, and sperm mobility. In summary, this study depicts a multi-organ proteomic landscape of COVID-19 autopsies that furthers our understanding of the biological basis of COVID-19 pathology.


Assuntos
COVID-19/metabolismo , Regulação da Expressão Gênica , Proteoma/biossíntese , Proteômica , SARS-CoV-2/metabolismo , Autopsia , COVID-19/patologia , COVID-19/terapia , Feminino , Humanos , Masculino , Especificidade de Órgãos
2.
Cell ; 182(1): 59-72.e15, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32492406

RESUMO

Early detection and effective treatment of severe COVID-19 patients remain major challenges. Here, we performed proteomic and metabolomic profiling of sera from 46 COVID-19 and 53 control individuals. We then trained a machine learning model using proteomic and metabolomic measurements from a training cohort of 18 non-severe and 13 severe patients. The model was validated using 10 independent patients, 7 of which were correctly classified. Targeted proteomics and metabolomics assays were employed to further validate this molecular classifier in a second test cohort of 19 COVID-19 patients, leading to 16 correct assignments. We identified molecular changes in the sera of COVID-19 patients compared to other groups implicating dysregulation of macrophage, platelet degranulation, complement system pathways, and massive metabolic suppression. This study revealed characteristic protein and metabolite changes in the sera of severe COVID-19 patients, which might be used in selection of potential blood biomarkers for severity evaluation.


Assuntos
Infecções por Coronavirus/sangue , Metabolômica , Pneumonia Viral/sangue , Proteômica , Adulto , Aminoácidos/metabolismo , Biomarcadores/sangue , COVID-19 , Análise por Conglomerados , Infecções por Coronavirus/fisiopatologia , Feminino , Humanos , Metabolismo dos Lipídeos , Aprendizado de Máquina , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/fisiopatologia , Índice de Gravidade de Doença
3.
Nat Immunol ; 22(11): 1440-1451, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34686860

RESUMO

Intestinal epithelial cell (IEC) damage by T cells contributes to graft-versus-host disease, inflammatory bowel disease and immune checkpoint blockade-mediated colitis. But little is known about the target cell-intrinsic features that affect disease severity. Here we identified disruption of oxidative phosphorylation and an increase in succinate levels in the IECs from several distinct in vivo models of T cell-mediated colitis. Metabolic flux studies, complemented by imaging and protein analyses, identified disruption of IEC-intrinsic succinate dehydrogenase A (SDHA), a component of mitochondrial complex II, in causing these metabolic alterations. The relevance of IEC-intrinsic SDHA in mediating disease severity was confirmed by complementary chemical and genetic experimental approaches and validated in human clinical samples. These data identify a critical role for the alteration of the IEC-specific mitochondrial complex II component SDHA in the regulation of the severity of T cell-mediated intestinal diseases.


Assuntos
Colite/enzimologia , Colo/enzimologia , Citotoxicidade Imunológica , Complexo II de Transporte de Elétrons/metabolismo , Células Epiteliais/enzimologia , Doença Enxerto-Hospedeiro/enzimologia , Mucosa Intestinal/enzimologia , Mitocôndrias/enzimologia , Linfócitos T/imunologia , Animais , Estudos de Casos e Controles , Comunicação Celular , Células Cultivadas , Colite/genética , Colite/imunologia , Colite/patologia , Colo/imunologia , Colo/ultraestrutura , Modelos Animais de Doenças , Complexo II de Transporte de Elétrons/genética , Células Epiteliais/imunologia , Células Epiteliais/ultraestrutura , Feminino , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Humanos , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/ultraestrutura , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/imunologia , Mitocôndrias/ultraestrutura , Fosforilação Oxidativa , Ácido Succínico/metabolismo , Linfócitos T/metabolismo
4.
Immunity ; 57(4): 859-875.e11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38513665

RESUMO

At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.


Assuntos
Interleucina-23 , Periodontite , Humanos , Células Epiteliais , Inflamação , Receptor 5 Toll-Like/metabolismo
5.
Cell ; 174(2): 465-480.e22, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007418

RESUMO

Modern genetic approaches are powerful in providing access to diverse cell types in the brain and facilitating the study of their function. Here, we report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.


Assuntos
Encéfalo/metabolismo , Técnicas de Inativação de Genes/métodos , Genes Reporter , Animais , Encéfalo/citologia , Cálcio/metabolismo , Linhagem Celular , Hibridização in Situ Fluorescente , Luz , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Neurônios/metabolismo , Optogenética , RNA não Traduzido/genética , Transgenes/genética
6.
Immunity ; 56(2): 353-368.e6, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36736321

RESUMO

The severity of T cell-mediated gastrointestinal (GI) diseases such as graft-versus-host disease (GVHD) and inflammatory bowel diseases correlates with a decrease in the diversity of the host gut microbiome composition characterized by loss of obligate anaerobic commensals. The mechanisms underpinning these changes in the microbial structure remain unknown. Here, we show in multiple specific pathogen-free (SPF), gnotobiotic, and germ-free murine models of GI GVHD that the initiation of the intestinal damage by the pathogenic T cells altered ambient oxygen levels in the GI tract and caused dysbiosis. The change in oxygen levels contributed to the severity of intestinal pathology in a host intestinal HIF-1α- and a microbiome-dependent manner. Regulation of intestinal ambient oxygen levels with oral iron chelation mitigated dysbiosis and reduced the severity of the GI GVHD. Thus, targeting ambient intestinal oxygen levels may represent a novel, non-immunosuppressive strategy to mitigate T cell-driven intestinal diseases.


Assuntos
Gastroenteropatias , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Camundongos , Disbiose , Intestinos/patologia , Doença Enxerto-Hospedeiro/patologia
7.
Mol Cell ; 83(21): 3818-3834.e7, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37820733

RESUMO

N6-methyladenosine (m6A) modifications play crucial roles in RNA metabolism. How m6A regulates RNA polymerase II (RNA Pol II) transcription remains unclear. We find that 7SK small nuclear RNA (snRNA), a regulator of RNA Pol II promoter-proximal pausing, is highly m6A-modified in non-small cell lung cancer (NSCLC) cells. In A549 cells, we identified eight m6A sites on 7SK and discovered methyltransferase-like 3 (METTL3) and alkB homolog 5 (ALKBH5) as the responsible writer and eraser. When the m6A-7SK is specifically erased by a dCasRx-ALKBH5 fusion protein, A549 cell growth is attenuated due to reduction of RNA Pol II transcription. Mechanistically, removal of m6A leads to 7SK structural rearrangements that facilitate sequestration of the positive transcription elongation factor b (P-TEFb) complex, which results in reduction of serine 2 phosphorylation (Ser2P) in the RNA Pol II C-terminal domain and accumulation of RNA Pol II in the promoter-proximal region. Taken together, we uncover that m6A modifications of a non-coding RNA regulate RNA Pol II transcription and NSCLC tumorigenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Fator B de Elongação Transcricional Positiva/genética , Neoplasias Pulmonares/genética , RNA Nuclear Pequeno/genética , Transcrição Gênica , Células HeLa , Metiltransferases/genética , Metiltransferases/metabolismo
8.
Nat Immunol ; 19(2): 192-201, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29335647

RESUMO

Pulmonary immunity requires tight regulation, as interstitial inflammation can compromise gas exchange and lead to respiratory failure. Here we found a greater number of aged CD11bhiL-selectinloCXCR4+ polymorphonuclear leukocytes (PMNs) in lung vasculature than in the peripheral circulation. Using pulmonary intravital microscopy, we observed lung PMNs physically interacting with B cells via ß2 integrins; this initiated neutrophil apoptosis, which led to macrophage-mediated clearance. Genetic deletion of B cells led to the accumulation of aged PMNs in the lungs without systemic inflammation, which caused pathological fibrotic interstitial lung disease that was attenuated by the adoptive transfer of B cells or depletion of PMNs. Thus, the lungs are an intermediary niche in the PMN lifecycle wherein aged PMNs are regulated by B cells, which restrains their potential to cause pulmonary pathology.


Assuntos
Linfócitos B/imunologia , Doenças Pulmonares Intersticiais/patologia , Neutrófilos/patologia , Fibrose Pulmonar/patologia , Animais , Doenças Pulmonares Intersticiais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibrose Pulmonar/imunologia
9.
Genes Dev ; 35(23-24): 1595-1609, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34819352

RESUMO

Binding of microRNAs (miRNAs) to mRNAs normally results in post-transcriptional repression of gene expression. However, extensive base-pairing between miRNAs and target RNAs can trigger miRNA degradation, a phenomenon called target RNA-directed miRNA degradation (TDMD). Here, we systematically analyzed Argonaute-CLASH (cross-linking, ligation, and sequencing of miRNA-target RNA hybrids) data and identified numerous candidate TDMD triggers, focusing on their ability to induce nontemplated nucleotide addition at the miRNA 3' end. When exogenously expressed in various cell lines, eight triggers induce degradation of corresponding miRNAs. Both the TDMD base-pairing and surrounding sequences are essential for TDMD. CRISPR knockout of endogenous trigger or ZSWIM8, a ubiquitin ligase essential for TDMD, reduced miRNA degradation. Furthermore, degradation of miR-221 and miR-222 by a trigger in BCL2L11, which encodes a proapoptotic protein, enhances apoptosis. Therefore, we uncovered widespread TDMD triggers in target RNAs and demonstrated an example that could functionally cooperate with the encoded protein.


Assuntos
MicroRNAs , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Pareamento de Bases , MicroRNAs/genética , MicroRNAs/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética
10.
Immunol Rev ; 321(1): 33-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688390

RESUMO

Neuropathic pain is a common and debilitating modality of chronic pain induced by a lesion or disease of the somatosensory nervous system. Albeit the elucidation of numerous pathophysiological mechanisms and the development of potential treatment compounds, safe and reliable therapies of neuropathic pain remain poor. Multiple stress/cell death pathways have been shown to be implicated in neuroinflammation during neuropathic pain. Here, we summarize the current knowledge of stress/cell death pathways and present an overview of the roles and molecular mechanisms of stress/cell death pathways in neuroinflammation during neuropathic pain, covering intrinsic and extrinsic apoptosis, autophagy, mitophagy, ferroptosis, pyroptosis, necroptosis, and phagoptosis. Small molecule compounds that modulate stress/cell death pathways in alleviating neuropathic pain are discussed mainly based on preclinical neuropathic pain models. These findings will contribute to in-depth understanding of the pathological processes during neuropathic pain as well as bridge the gap between basic and translational research to uncover new neuroprotective interventions.


Assuntos
Neuralgia , Doenças Neuroinflamatórias , Humanos , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Apoptose , Piroptose , Autofagia
11.
Genome Res ; 33(10): 1833-1847, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37914227

RESUMO

Structural variations have emerged as an important driving force for genome evolution and phenotypic variation in various organisms, yet their contributions to genetic diversity and adaptation in domesticated animals remain largely unknown. Here we constructed a pangenome based on 250 sequenced individuals from 32 pig breeds in Eurasia and systematically characterized coding sequence presence/absence variations (PAVs) within pigs. We identified 308.3-Mb nonreference sequences and 3438 novel genes absent from the current reference genome. Gene PAV analysis showed that 16.8% of the genes in the pangene catalog undergo PAV. A number of newly identified dispensable genes showed close associations with adaptation. For instance, several novel swine leukocyte antigen (SLA) genes discovered in nonreference sequences potentially participate in immune responses to productive and respiratory syndrome virus (PRRSV) infection. We delineated previously unidentified features of the pig mobilome that contained 490,480 transposable element insertion polymorphisms (TIPs) resulting from recent mobilization of 970 TE families, and investigated their population dynamics along with influences on population differentiation and gene expression. In addition, several candidate adaptive TE insertions were detected to be co-opted into genes responsible for responses to hypoxia, skeletal development, regulation of heart contraction, and neuronal cell development, likely contributing to local adaptation of Tibetan wild boars. These findings enhance our understanding on hidden layers of the genetic diversity in pigs and provide novel insights into the role of SVs in the evolutionary adaptation of mammals.


Assuntos
Cruzamento , Genoma , Humanos , Animais , Suínos , Variação Genética , Mamíferos
12.
J Biol Chem ; 300(6): 107319, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677512

RESUMO

Lipid metabolism is important for the maintenance of physiological homeostasis. Several members of the small ubiquitin-like modifier (SUMO)-specific protease (SENP) family have been reported as the regulators of lipid homeostasis. However, the function of Senp7 in lipid metabolism remains unclear. In this study, we generated both conventional and adipocyte-specific Senp7 KO mice to characterize the role of Senp7 in lipid metabolism homeostasis. Both Senp7-deficient mice displayed reduced white adipose tissue mass and decreased size of adipocytes. By analyzing the lipid droplet morphology, we demonstrated that the lipid droplet size was significantly smaller in Senp7-deficient adipocytes. Mechanistically, Senp7 could deSUMOylate the perilipin family protein Plin4 to promote the lipid droplet localization of Plin4. Our results reveal an important role of Senp7 in the maturation of lipid droplets via Plin4 deSUMOylation.


Assuntos
Tecido Adiposo Branco , Gotículas Lipídicas , Camundongos Knockout , Perilipina-4 , Animais , Camundongos , Gotículas Lipídicas/metabolismo , Tecido Adiposo Branco/metabolismo , Perilipina-4/metabolismo , Perilipina-4/genética , Adipócitos/metabolismo , Metabolismo dos Lipídeos , Sumoilação , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética
13.
J Virol ; 98(5): e0006024, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38557170

RESUMO

As obligate parasites, viruses have evolved multiple strategies to evade the host immune defense. Manipulation of the host proteasome system to degrade specific detrimental factors is a common viral countermeasure. To identify host proteins targeted for proteasomal degradation by porcine reproductive and respiratory syndrome virus (PRRSV), we conducted a quantitative proteomics screen of PRRSV-infected Marc-145 cells under the treatment with proteasome inhibitor MG132. The data revealed that the expression levels of programmed cell death 4 (PDCD4) were strongly downregulated by PRRSV and significantly rescued by MG132. Further investigation confirmed that PRRSV infection induced the translocation of PDCD4 from the nucleus to the cytoplasm, and the viral nonstructural protein 9 (Nsp9) promoted PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway. The C-terminal domain of Nsp9 was responsible for PDCD4 degradation. As for the role of PDCD4 during PRRSV infection, we demonstrated that PDCD4 knockdown favored viral replication, while its overexpression significantly attenuated replication, suggesting that PDCD4 acts as a restriction factor for PRRSV. Mechanistically, we discovered eukaryotic translation initiation factor 4A (eIF4A) was required for PRRSV. PDCD4 interacted with eIF4A through four sites (E249, D253, D414, and D418) within its two MA3 domains, disrupting eIF4A-mediated translation initiation in the 5'-untranslated region of PRRSV, thereby inhibiting PRRSV infection. Together, our study reveals the antiviral function of PDCD4 and the viral strategy to antagonize PDCD4. These results will contribute to our understanding of the immune evasion strategies employed by PRRSV and offer valuable insights for developing new antiviral targets.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in major economic losses in the global swine industry and is difficult to control effectively. Here, using a quantitative proteomics screen, we identified programmed cell death 4 (PDCD4) as a host protein targeted for proteasomal degradation by PRRSV. We demonstrated that PDCD4 restricts PRRSV replication by interacting with eukaryotic translation initiation factor 4A, which is required for translation initiation in the viral 5'-untranslated region. Additionally, four sites within two MA3 domains of PDCD4 are identified to be responsible for its antiviral function. Conversely, PRRSV nonstructural protein 9 promotes PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway, thus weakening the anti-PRRSV function. Our work unveils PDCD4 as a previously unrecognized host restriction factor for PRRSV and reveals that PRRSV develops countermeasures to overcome PDCD4. This will provide new insights into virus-host interactions and the development of new antiviral targets.


Assuntos
Proteínas Reguladoras de Apoptose , Fator de Iniciação 4A em Eucariotos , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas de Ligação a RNA , Proteínas não Estruturais Virais , Replicação Viral , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Animais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Suínos , Linhagem Celular , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Interações Hospedeiro-Patógeno , Proteólise , Humanos , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
14.
Plant Physiol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889048

RESUMO

Transcriptional reprogramming is critical for plant immunity. Several calmodulin (CaM)-binding protein 60 (CBP60) family transcription factors (TFs) in Arabidopsis (Arabidopsis thaliana), including CBP60g, Systemic Acquired Resistance Deficient 1 (SARD1), CBP60a, and CBP60b, are critical for and show distinct roles in immunity. However, there are additional CBP60 members whose function is unclear. We report here that Arabidopsis CBP60c-f, four uncharacterized CBP60 members, play redundant roles with CBP60b in the transcriptional regulation of immunity responses, whose pCBP60b-driven expression compensates the loss of CBP60b. By contrast, neither CBP60g nor SARD1 is inter-changeable with CBP60b, suggesting clade-specific functionalization. We further show that function of CBP60b clade TFs relies on DNA-binding domains (DBDs) and CaM-binding domains, suggesting that they are downstream components of calcium signaling. Importantly, we demonstrate that CBP60s encoded in earliest land plant lineage Physcomitrium patens and Selaginella moellendorffii, are functionally homologous to Arabidopsis CBP60b, suggesting that the CBP60b clade contains the prototype TFs of the CBP60 family. Furthermore, tomato and cucumber CBP60b-like genes rescue the defects of Arabidopsis cbp60b and activate the expression of tomato and cucumber SALICYLIC ACID INDUCTION DEFICIIENT2 (SID2) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes, suggesting that immune response pathways centered on CBP60b are also evolutionarily conserved. Together, these findings suggest CBP60b clade transcription factors are functionally conserved in evolution and positively mediate immunity.

15.
Nat Chem Biol ; 19(10): 1276-1285, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37550431

RESUMO

Phe-Met-Arg-Phe-amide (FMRFamide)-activated sodium channels (FaNaCs) are a family of channels activated by the neuropeptide FMRFamide, and, to date, the underlying ligand gating mechanism remains unknown. Here we present the high-resolution cryo-electron microscopy structures of Aplysia californica FaNaC in both apo and FMRFamide-bound states. AcFaNaC forms a chalice-shaped trimer and possesses several notable features, including two FaNaC-specific insertion regions, a distinct finger domain and non-domain-swapped transmembrane helix 2 in the transmembrane domain (TMD). One FMRFamide binds to each subunit in a cleft located in the top-most region of the extracellular domain, with participation of residues from the neighboring subunit. Bound FMRFamide adopts an extended conformation. FMRFamide binds tightly to A. californica FaNaC in an N terminus-in manner, which causes collapse of the binding cleft and induces large local conformational rearrangements. Such conformational changes are propagated downward toward the TMD via the palm domain, possibly resulting in outward movement of the TMD and dilation of the ion conduction pore.


Assuntos
Ativação do Canal Iônico , Neuropeptídeos , FMRFamida/metabolismo , FMRFamida/farmacologia , Microscopia Crioeletrônica , Neuropeptídeos/metabolismo , Canais de Sódio/química , Canais de Sódio/metabolismo
16.
Exp Cell Res ; 434(1): 113871, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049080

RESUMO

Disrupted intestinal barrier homeostasis is fundamental to inflammatory bowel disease. Thymosin ß4 (Tß4) improves inflammation and has beneficial effects in dry-eye diseases, but its effects on the intestinal mucus barrier remain unknown. Therefore, this study evaluated the underlying regulatory mechanisms and effects of Tß4 by examining Tß4 expression in a mouse model with dextran sodium sulfate (DSS)-induced colitis and colonic barrier damage. Additionally, we intraperitoneally injected C57BL/6 mice with Tß4 to assess barrier function, microtubule-associated protein 1 light chain 3 (LC3II) protein expression, and autophagy. Finally, normal human colon tissue and colon carcinoma cells (Caco2) were cultured to verify Tß4-induced barrier function and autophagy changes. Mucin2 levels decreased, microbial infiltration increased, and Tß4 expression increased in the colitis mouse model versus the control mice, indicating mucus barrier damage. Moreover, Tß4-treated C57BL/6 mice had damaged intestinal mucus barriers and decreased LC3II levels. Tß4 also inhibited colonic mucin2 production, disrupted tight junctions, and downregulated autophagy; these results were confirmed in Caco2 cells and normal human colon tissue. In summary, Tß4 may be implicated in colitis by compromising the integrity of the intestinal mucus barrier and inhibiting autophagy. Thus, Tß4 could be a new diagnostic marker for intestinal barrier defects.


Assuntos
Doenças Inflamatórias Intestinais , Timosina , Animais , Feminino , Humanos , Camundongos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Camundongos Endogâmicos C57BL , Sirolimo/administração & dosagem , Timosina/genética , Timosina/metabolismo , Regulação para Cima
17.
Mol Cell Proteomics ; 22(9): 100613, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394064

RESUMO

Prostate cancer (PCa) is the second most prevalent malignancy and the fifth cause of cancer-related deaths in men. A crucial challenge is identifying the population at risk of rapid progression from hormone-sensitive prostate cancer (HSPC) to lethal castration-resistant prostate cancer (CRPC). We collected 78 HSPC biopsies and measured their proteomes using pressure cycling technology and a pulsed data-independent acquisition pipeline. We quantified 7355 proteins using these HSPC biopsies. A total of 251 proteins showed differential expression between patients with a long- or short-term progression to CRPC. Using a random forest model, we identified seven proteins that significantly discriminated long- from short-term progression patients, which were used to classify PCa patients with an area under the curve of 0.873. Next, one clinical feature (Gleason sum) and two proteins (BGN and MAPK11) were found to be significantly associated with rapid disease progression. A nomogram model using these three features was generated for stratifying patients into groups with significant progression differences (p-value = 1.3×10-4). To conclude, we identified proteins associated with a fast progression to CRPC and an unfavorable prognosis. Based on these proteins, our machine learning and nomogram models stratified HSPC into high- and low-risk groups and predicted their prognoses. These models may aid clinicians in predicting the progression of patients, guiding individualized clinical management and decisions.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/metabolismo , Estudos Retrospectivos , Antígeno Prostático Específico , Hormônios
18.
Proc Natl Acad Sci U S A ; 119(26): e2204289119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727985

RESUMO

Behçet's disease (BD) is a chronic vasculitis characterized by systemic immune aberrations. However, a comprehensive understanding of immune disturbances in BD and how they contribute to BD pathogenesis is lacking. Here, we performed single-cell and bulk RNA sequencing to profile peripheral blood mononuclear cells (PBMCs) and isolated monocytes from BD patients and healthy donors. We observed prominent expansion and transcriptional changes in monocytes in PBMCs from BD patients. Deciphering the monocyte heterogeneity revealed the accumulation of C1q-high (C1qhi) monocytes in BD. Pseudotime inference indicated that BD monocytes markedly shifted their differentiation toward inflammation-accompanied and C1qhi monocyte-ended trajectory. Further experiments showed that C1qhi monocytes enhanced phagocytosis and proinflammatory cytokine secretion, and multiplatform analyses revealed the significant clinical relevance of this subtype. Mechanistically, C1qhi monocytes were induced by activated interferon-γ (IFN-γ) signaling in BD patients and were decreased by tofacitinib treatment. Our study illustrates the BD immune landscape and the unrecognized contribution of C1qhi monocytes to BD hyperinflammation, showing their potential as therapeutic targets and clinical assessment indexes.


Assuntos
Síndrome de Behçet , Complemento C1q , Monócitos , Síndrome de Behçet/genética , Síndrome de Behçet/imunologia , Complemento C1q/genética , Complemento C1q/imunologia , Humanos , Monócitos/imunologia , RNA-Seq , Análise de Célula Única
19.
Ann Intern Med ; 177(2): 165-176, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38190711

RESUMO

BACKGROUND: The efficacy of the BNT162b2 vaccine in pediatrics was assessed by randomized trials before the Omicron variant's emergence. The long-term durability of vaccine protection in this population during the Omicron period remains limited. OBJECTIVE: To assess the effectiveness of BNT162b2 in preventing infection and severe diseases with various strains of the SARS-CoV-2 virus in previously uninfected children and adolescents. DESIGN: Comparative effectiveness research accounting for underreported vaccination in 3 study cohorts: adolescents (12 to 20 years) during the Delta phase and children (5 to 11 years) and adolescents (12 to 20 years) during the Omicron phase. SETTING: A national collaboration of pediatric health systems (PEDSnet). PARTICIPANTS: 77 392 adolescents (45 007 vaccinated) during the Delta phase and 111 539 children (50 398 vaccinated) and 56 080 adolescents (21 180 vaccinated) during the Omicron phase. INTERVENTION: First dose of the BNT162b2 vaccine versus no receipt of COVID-19 vaccine. MEASUREMENTS: Outcomes of interest include documented infection, COVID-19 illness severity, admission to an intensive care unit (ICU), and cardiac complications. The effectiveness was reported as (1-relative risk)*100, with confounders balanced via propensity score stratification. RESULTS: During the Delta period, the estimated effectiveness of the BNT162b2 vaccine was 98.4% (95% CI, 98.1% to 98.7%) against documented infection among adolescents, with no statistically significant waning after receipt of the first dose. An analysis of cardiac complications did not suggest a statistically significant difference between vaccinated and unvaccinated groups. During the Omicron period, the effectiveness against documented infection among children was estimated to be 74.3% (CI, 72.2% to 76.2%). Higher levels of effectiveness were seen against moderate or severe COVID-19 (75.5% [CI, 69.0% to 81.0%]) and ICU admission with COVID-19 (84.9% [CI, 64.8% to 93.5%]). Among adolescents, the effectiveness against documented Omicron infection was 85.5% (CI, 83.8% to 87.1%), with 84.8% (CI, 77.3% to 89.9%) against moderate or severe COVID-19, and 91.5% (CI, 69.5% to 97.6%) against ICU admission with COVID-19. The effectiveness of the BNT162b2 vaccine against the Omicron variant declined 4 months after the first dose and then stabilized. The analysis showed a lower risk for cardiac complications in the vaccinated group during the Omicron variant period. LIMITATION: Observational study design and potentially undocumented infection. CONCLUSION: This study suggests that BNT162b2 was effective for various COVID-19-related outcomes in children and adolescents during the Delta and Omicron periods, and there is some evidence of waning effectiveness over time. PRIMARY FUNDING SOURCE: National Institutes of Health.


Assuntos
Vacina BNT162 , COVID-19 , Estados Unidos , Humanos , Adolescente , Criança , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Pesquisa Comparativa da Efetividade , Hospitalização
20.
Nano Lett ; 24(5): 1602-1610, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38286023

RESUMO

Metallene materials with atomic thicknesses are receiving increasing attention in electrocatalysis due to ultrahigh surface areas and distinctive surface strain. However, the continuous strain regulation of metallene remains a grand challenge. Herein, taking advantage of autocatalytic reduction of Cu2+ on biaxially strained, carbon-intercalated Ir metallene, we achieve control over the carbon extraction kinetics, enabling fine regulation of carbon intercalation concentration and continuous tuning of (111) in-plane (-2.0%-2.6%) and interplanar (3.5%-8.8%) strains over unprecedentedly wide ranges. Electrocatalysis measurements reveal the strain-dependent activity toward hydrogen evolution reaction (HER), where weakly strained Ir metallene (w-Ir metallene) with the smallest lattice constant presents the highest mass activity of 2.89 A mg-1Ir at -0.02 V vs reversible hydrogen electrode (RHE). Theoretical calculations validated the pivotal role of lattice compression in optimizing H binding on carbon-intercalated Ir metallene surfaces by downshifting the d-band center, further highlighting the significance of strain engineering for boosted electrocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA