Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Food Sci Biotechnol ; 33(8): 1921-1930, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38752110

RESUMO

Akkermansia muciniphila (Akk) has recently become popular due to its therapeutic effect on various diseases. However, Akk's high-density cultivation is difficult due to its anaerobic characteristics. Therefore, Akk was cultured with modified brain-heart infusion (M-BHI) to reach 1011 CFU/mL. 1H-NMR determined the metabolites of Akk and validated them by an amino acid analyzer. Compared to the BHI, Akk significantly up-regulated lactate, histidine, fumaric acid, cytidine, threonine, arginine, and hydroxyproline in the M-BHI and significantly down-regulated methionine, trimethylamine, and sarcosine. Regarding pathway enrichment analysis, histidine metabolism, arginine and proline metabolism, cysteine and methionine metabolism mainly regulate differential metabolites. In addition, M-BHI alters the metabolic profile by affecting Akk's involvement in amino acid metabolism remodeling. Changed metabolites showed that Akk fermentation in M-BHI may play a physiological role in regulating immune homeostasis and reducing risk factors related to diseases. Therefore, M-BHI provides a promising reference for Akk cultivation in future industrial preparation. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01492-x.

2.
J Agric Food Chem ; 72(17): 9818-9827, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647087

RESUMO

The feces of healthy middle-aged and old people were first transplanted into d-galactose-induced aging mice to construct humanized aging mice with gut microbiota (FMTC) to confirm the antiaging effect of probiotics produced from centenarians. The mouse model was then treated with centenarian-derived Bifidobacterium bifidum (FMTL), Lactobacillus casei (FMTB), and their mixtures (FMTM), and young mice were used as the control. Compared with the FMTC group, the results demonstrated that the probiotics and their combinations alleviated neuronal damage, increased antioxidant capacity, decreased inflammation, and enhanced cognitive and memory functions in aging mice. In the gut microbiota, the relative abundance of Lactobacillus, Ligilactobacillus, and Akkermansia increased and that of Desulfovibrio and Colidextribacter decreased in the FMTM group compared with that in the FMTC group. The three probiotic groups displayed significant changes in 15 metabolites compared with the FMTC group, with 4 metabolites showing increased expression and 11 metabolites showing decreased expression. The groups were graded as Control > FMTM > FMTB > FMTL > FMTC using a newly developed comprehensive quantitative scoring system that thoroughly analyzed the various indicators of this study. The beneficial antiaging effects of probiotics derived from centenarians were quantitatively described using a novel perspective in this study; it is confirmed that both probiotics and their combinations exert antiaging effects, with the probiotic complex group exhibiting a larger effect.


Assuntos
Envelhecimento , Bifidobacterium bifidum , Fezes , Galactose , Microbioma Gastrointestinal , Lacticaseibacillus casei , Probióticos , Animais , Lacticaseibacillus casei/metabolismo , Humanos , Camundongos , Probióticos/administração & dosagem , Probióticos/farmacologia , Bifidobacterium bifidum/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Fezes/microbiologia , Fezes/química , Masculino , Transplante de Microbiota Fecal , Pessoa de Meia-Idade , Feminino , Idoso , Camundongos Endogâmicos C57BL , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA